Live Challenge 2

[This post originally appeared on the Brilliant blog on 9/28/2012.]

The following challenges will be discussed this coming week. Remember to keep discussion of a challenge to its own blog post.

Monday: What is the minimum number of divisors for the 8-digit number abbaabba \overline{abbaabba} , where a a and b b are integers from 1 to 9?

Clarification: The number 1221=1221 \overline{1221} = 1221, and is not equal to 4=1×2×2×1 4=1 \times 2 \times 2 \times 1.

Tuesday: The vertices of a regular 10-gon are labeled V1,V2,Vn V_1, V_2, \ldots V_n, which is a permutation of {1,2,,10} \{ 1, 2, \ldots, 10\}. Define a <strong>neighboring sum</strong> to be the sum of 3 consecutive vertices Vi,Vi+1 V_i, V_{i+1} and Vi+2 V_{i+2} [where V11=V1,V12=V2 V_{11}=V_1, V_{12}=V_2]. For each permutation σ \sigma, let Nσ N_\sigma denote the maximum neighboring sum. As σ \sigma ranges over all permutations, what is the minimum value of Nσ N_\sigma?

Clarification: If the integers are written as 1,2,3,4,5,6,7,8,9,10 1, 2, 3, 4, 5, 6, 7, 8, 9, 10 around the circle, then the neighboring sums are 6,9,12,15,18,21,24,27,20,13 6, 9, 12, 15, 18, 21, 24, 27, 20, 13, and the maximum neighboring sum is 27.

Thursday: Let A A be a number with 2012 digits such that A A is a multiple of 10! 10!. Let B B be the digit sum of A A, C C be the digit sum of B B, and D D be the digit sum of C C. What is the <span style="text-decoration:underline;">unit’s digit</span> of D D?

Note: The <strong>digit sum</strong> of a number is the sum of all its digits. For example the digit sum of 1123 is 1+1+2+3=7 1 + 1 + 2 + 3 = 7.

Note: 10!=10×9×8××1 10! = 10 \times 9 \times 8 \times \ldots \times 1.

Friday: Consider an infinite chessboard, where the squares have side length of 1. The squares are colored black and white alternately. The (finite) radius of the largest circle which can be drawn completely on the white squares (hence you can see the entire circle) has a radius of abc \frac {a\sqrt{b}} {c} , where a,b a, b and c c are integers, a a and c c are coprime, and b b is not divisible by the square of any prime. What is the value of a+b+c a + b + c?

Clarification: a,b a, b and c c are all allowed to be 1. In particular, if you think the the largest radius is 1=111 1 = \frac {1 \sqrt{1}}{1}, then your answer to this should be 1+1+1=3 1+1+1=3.

Do not simply state your numerical answer. Provide a complete solution so that other students can learn from it.

Note by Calvin Lin
8 years ago

1 vote

  Easy Math Editor

This discussion board is a place to discuss our Daily Challenges and the math and science related to those challenges. Explanations are more than just a solution — they should explain the steps and thinking strategies that you used to obtain the solution. Comments should further the discussion of math and science.

When posting on Brilliant:

  • Use the emojis to react to an explanation, whether you're congratulating a job well done , or just really confused .
  • Ask specific questions about the challenge or the steps in somebody's explanation. Well-posed questions can add a lot to the discussion, but posting "I don't understand!" doesn't help anyone.
  • Try to contribute something new to the discussion, whether it is an extension, generalization or other idea related to the challenge.
  • Stay on topic — we're all here to learn more about math and science, not to hear about your favorite get-rich-quick scheme or current world events.

MarkdownAppears as
*italics* or _italics_ italics
**bold** or __bold__ bold

- bulleted
- list

  • bulleted
  • list

1. numbered
2. list

  1. numbered
  2. list
Note: you must add a full line of space before and after lists for them to show up correctly
paragraph 1

paragraph 2

paragraph 1

paragraph 2

[example link](https://brilliant.org)example link
> This is a quote
This is a quote
    # I indented these lines
    # 4 spaces, and now they show
    # up as a code block.

    print "hello world"
# I indented these lines
# 4 spaces, and now they show
# up as a code block.

print "hello world"
MathAppears as
Remember to wrap math in \( ... \) or \[ ... \] to ensure proper formatting.
2 \times 3 2×3 2 \times 3
2^{34} 234 2^{34}
a_{i-1} ai1 a_{i-1}
\frac{2}{3} 23 \frac{2}{3}
\sqrt{2} 2 \sqrt{2}
\sum_{i=1}^3 i=13 \sum_{i=1}^3
\sin \theta sinθ \sin \theta
\boxed{123} 123 \boxed{123}

Comments

×

Problem Loading...

Note Loading...

Set Loading...