Calculus Level 3

1 1 2 3 + 1 4 3 1 5 3 + 1 7 3 1 8 3 + = a π b b a b 1-\dfrac{1}{2^3}+\dfrac{1}{4^3}-\dfrac{1}{5^3}+\dfrac{1}{7^3}-\dfrac{1}{8^3}+\cdots= \dfrac{aπ^b}{b^a\sqrt{b}}

Where a , b a,b are co-prime positive integers. Find ( a + b ) (a+b)


The answer is 7.

This section requires Javascript.
You are seeing this because something didn't load right. We suggest you, (a) try refreshing the page, (b) enabling javascript if it is disabled on your browser and, finally, (c) loading the non-javascript version of this page . We're sorry about the hassle.

1 solution

Dwaipayan Shikari
Feb 16, 2021

π 2 tan ( π 2 x ) = 1 ( 1 x ) 1 ( 1 + x ) + 1 ( 3 x ) 1 ( 3 + x ) + 1 ( 5 x ) 1 ( 5 + x ) + \dfrac{π}{2}\tan(\dfrac{π}{2}x)= \dfrac{1}{(1-x)}-\dfrac{1}{(1+x)}+\dfrac{1}{(3-x)}-\dfrac{1}{(3+x)}+\dfrac{1}{(5-x)}-\dfrac{1}{(5+x)}+\cdots Differentiating respect to x x for two times gives π 3 8 sec 2 ( π 2 x ) tan ( π 2 x ) = 1 ( 1 x ) 3 1 ( 1 + x ) 3 + 1 ( 3 x ) 3 1 ( 3 + x ) 3 \dfrac{π^3}{8}\sec^2(\frac{π}{2}x)\tan(\frac{π}{2}x)= \dfrac{1}{(1-x)^3}-\dfrac{1}{(1+x)^3}+\dfrac{1}{(3-x)^3}-\dfrac{1}{(3+x)^3}-\cdots Take x = 1 3 x=\dfrac{1}{3} The series becomes π 3 8 sec 2 ( π 6 ) tan ( π 6 ) = 3 3 2 3 3 3 4 3 + 3 3 8 3 3 3 1 0 3 + \dfrac{π^3}{8}\sec^2(\dfrac{π}{6})\tan(\dfrac{π}{6})= \dfrac{3^3}{2^3}-\dfrac{3^3}{4^3}+\dfrac{3^3}{8^3}-\dfrac{3^3}{10^3}+\cdots π 3 6 3 × 8 27 = 1 1 2 3 + 1 4 3 1 5 3 + \dfrac{π^3}{6\sqrt{3}}×\dfrac{8}{27} = 1-\dfrac{1}{2^3}+\dfrac{1}{4^3}-\dfrac{1}{5^3}+\cdots

1 1 2 3 + 1 4 3 1 5 3 + 1 7 3 1 8 3 + = 4 π 3 81 3 1-\dfrac{1}{2^3}+\dfrac{1}{4^3}-\dfrac{1}{5^3}+\dfrac{1}{7^3}-\dfrac{1}{8^3}+\cdots= \dfrac{4π^3}{81\sqrt{3}} Answer is a + b = 4 + 3 = 7 \color{#20A900}\boxed{a+b=4+3=7}

For above lemma refer this solution

0 pending reports

×

Problem Loading...

Note Loading...

Set Loading...