This section requires Javascript.
You are seeing this because something didn't load right. We suggest you, (a) try
refreshing the page, (b) enabling javascript if it is disabled on your browser and,
finally, (c)
loading the
non-javascript version of this page
. We're sorry about the hassle.
I = ∫ 0 1 1 − x 2 t a n ( c o s − 1 x ) x d x
Putting x = c o s ( θ ) we have :
⇒ θ = c o s − 1 x
⇒ 1 − x 2 − d x = d θ
Evaluating the limits we have limits as x = 0 , θ = 2 π and x = 1 , θ = 0
I = − ∫ 2 π 0 t a n ( θ ) c o s ( θ ) d θ
I = ∫ 0 2 π t a n ( θ ) c o s ( θ ) d θ = ∫ 0 2 π s i n ( θ ) d θ = 1
Hint:
tan ( cos − 1 x ) = x 1 − x 2
is an identity.
its not like identity its only like transforming cos − 1 x i n t o tan − 1 x 1 − x 2 s i n c e c o s ( a n y a n g l e ) i s d e f i n e d a s h y p o t h e n u s e a d j a c e n t s i d e h e r e x i s a d j a c e n t s i d e a n d 1 i s h y p o t h e n u s e t h e r e f o r e o t h e r s i d e i s 1 − x 2 a n d t a n ( a n y a n g l e ) = a d j a c e n t s i d e o p p o s i t e s i d e
Also, d x d ( cos − 1 x ) = 1 − x 2 − 1 works like a charm too. :)
You can also substitute cos − 1 x = u . Then 1 − x 2 d x = − d u . The integral becomes -
∫ 2 1 π 4 1 π cos u ⋅ tan u ( − d u ) = ∫ 4 1 π 2 1 π sin u d u = − cos u ∣ ∣ ∣ 4 1 π 2 1 π = 1
Problem Loading...
Note Loading...
Set Loading...
Solution suggested by @John Muradeli
I = ∫ 0 1 1 − x 2 x tan ( cos − 1 x ) d x = ∫ 0 1 1 − x 2 x ⋅ x 1 − x 2 d x = ∫ 0 1 d x = 1 See note.
Note: Let cos − 1 x = θ , then tan ( cos − 1 x ) = tan θ = cos θ sin θ = x 1 − x 2