..

Calculus Level 2

0 1 x tan ( cos 1 x ) 1 x 2 d x = ? \large \int _{ 0 }^{ 1 }{ \frac { x \tan { (\cos ^{ -1 }{ x } ) } }{ \sqrt { 1-x^{ 2 } } }\text{ d}x } = \ ?


The answer is 1.

This section requires Javascript.
You are seeing this because something didn't load right. We suggest you, (a) try refreshing the page, (b) enabling javascript if it is disabled on your browser and, finally, (c) loading the non-javascript version of this page . We're sorry about the hassle.

4 solutions

Chew-Seong Cheong
Sep 19, 2017

Solution suggested by @John Muradeli

I = 0 1 x tan ( cos 1 x ) 1 x 2 d x See note. = 0 1 x 1 x 2 1 x 2 x d x = 0 1 d x = 1 \begin{aligned} I & = \int_0^1 \frac {x\color{#3D99F6}\tan \left(\cos^{-1}x\right)}{\sqrt{1-x^2}} dx & \small \color{#3D99F6} \text{See note.} \\ & = \int_0^1 \frac x{\sqrt{1-x^2}} \cdot {\color{#3D99F6}\frac {\sqrt{1-x^2}}{x}} dx \\ & = \int_0^1 dx = \boxed{1} \end{aligned}


Note: Let cos 1 x = θ \color{#3D99F6} \cos^{-1} x = \theta , then tan ( cos 1 x ) = tan θ = sin θ cos θ = 1 x 2 x \tan \left({\color{#3D99F6}\cos^{-1} x} \right) = \tan {\color{#3D99F6} \theta} = \dfrac {\sin \theta}{\cos \theta} = \dfrac {\sqrt{1-x^2}}{x}

Ronak Agarwal
Sep 8, 2014

I = 0 1 t a n ( c o s 1 x ) 1 x 2 x d x I=\int _{ 0 }^{ 1 }{ \frac { tan({ cos }^{ -1 }x) }{ \sqrt { 1-{ x }^{ 2 } } } xdx }

Putting x = c o s ( θ ) x=cos(\theta) we have :

θ = c o s 1 x \Rightarrow \theta ={ cos }^{ -1 }x

d x 1 x 2 = d θ \Rightarrow \frac { -dx }{ \sqrt { 1-{ x }^{ 2 } } } =d\theta

Evaluating the limits we have limits as x = 0 , θ = π 2 x=0 , \theta=\frac{\pi}{2} and x = 1 , θ = 0 x=1, \theta = 0

I = π 2 0 t a n ( θ ) c o s ( θ ) d θ I=-\int _{ \frac { \pi }{ 2 } }^{ 0 }{ tan(\theta) cos(\theta) d\theta }

I = 0 π 2 t a n ( θ ) c o s ( θ ) d θ = 0 π 2 s i n ( θ ) d θ = 1 I=\int _{ 0 }^{ \frac { \pi }{ 2 } }{ tan(\theta) cos(\theta) d\theta } =\int _{ 0 }^{ \frac { \pi }{ 2 } }{ sin(\theta) d\theta } =1

John M.
Sep 8, 2014

Hint:

tan ( cos 1 x ) = 1 x 2 x \tan{(\cos^{-1}{x})}=\frac{\sqrt{1-x^2}}{x}

is an identity.

its not like identity its only like transforming cos 1 x i n t o tan 1 1 x 2 x s i n c e c o s ( a n y a n g l e ) i s d e f i n e d a s a d j a c e n t s i d e h y p o t h e n u s e h e r e x i s a d j a c e n t s i d e a n d 1 i s h y p o t h e n u s e t h e r e f o r e o t h e r s i d e i s 1 x 2 a n d t a n ( a n y a n g l e ) = o p p o s i t e s i d e a d j a c e n t s i d e \cos ^{ -1 }{ x } into\quad \tan ^{ -1 }{ \frac { \sqrt { 1-{ x }^{ 2 } } }{ x } } \\ since\quad cos(any\quad angle)\quad is\quad defined\quad as\frac { \quad adjacent\quad side }{ hypothenuse } \\ here\quad x\quad is\quad adjacent\quad side\quad and\quad 1\quad is\quad hypothenuse\\ therefore\quad other\quad side\quad is\quad \sqrt { 1-{ x }^{ 2 } } \quad and\quad tan(any\quad angle)=\frac { opposite\quad side }{ adjacent\quad side }

samarth sangam - 6 years, 8 months ago

Also, d d x ( cos 1 x ) = 1 1 x 2 \dfrac{d}{dx} \left( \cos^{-1} x\right) = \dfrac{-1}{\sqrt{1-x^2}} works like a charm too. :)

Prasun Biswas - 6 years, 4 months ago
N. Aadhaar Murty
Oct 15, 2020

You can also substitute cos 1 x = u \cos^{-1}x = u . Then d x 1 x 2 = d u \frac {dx}{\sqrt {1 - x^{2}}} = -du . The integral becomes -

1 2 π 1 4 π cos u tan u ( d u ) = 1 4 π 1 2 π sin u d u = cos u 1 4 π 1 2 π = 1 \int_{\frac {1}{2}\pi}^{\frac {1}{4}\pi} \cos u \cdot \tan u (-du) = \int_{\frac {1}{4}\pi}^{\frac {1}{2}\pi} \sin u du = -\cos u \Big|_{\frac {1}{4}\pi}^{\frac {1}{2}\pi} = \boxed {1}

0 pending reports

×

Problem Loading...

Note Loading...

Set Loading...