...

Calculus Level 3

a 0 , a\neq 0,

0 a 1 6 tan ( cos 1 x ) ( a + x a 2 3 x 2 3 x 6 ( a 6 x 6 ) + a x 2 3 a 2 x 3 a 2 3 2 a x 3 + x 2 3 ) ( 2 1 3 + 2 2 4 + ( x + 12 ) 2 6 x 8 3 ) x ( x x x 1 2 + 1 3 2 2 4 ) 1 x 2 ( a 6 x 6 ) d x \int _{ 0 }^{ a^{-\frac{1}{6}} }{ \frac { \tan{(\cos^{-1}{x})}(\frac { a+x }{ \sqrt [ 3 ]{ a^{ 2 } } -\sqrt [ 3 ]{ x^{ 2 } } } -\sqrt[6]{x}(\sqrt[6]{a}-\sqrt[6]{x})+\frac { \sqrt [ 3 ]{ ax^{ 2 } } -\sqrt [ 3 ]{ a^{ 2 }x } }{ \sqrt [ 3 ]{ a^{ 2 } } -2\sqrt [ 3 ]{ ax } +\sqrt [ 3 ]{ x^{ 2 } } } )(\sqrt { \sqrt { 2 } -1 } \sqrt [ 4 ]{ 3+2\sqrt { 2 } } +\sqrt [ 3 ]{ (x+12)\sqrt { 2 } -6x-8 } )x}{(\frac{x-\sqrt{x}}{\sqrt{x}-1}-\sqrt{\sqrt{2}+1}\sqrt[4]{3-2\sqrt{2}}) \sqrt{1-x^2}(\sqrt[6]a-\sqrt[6]{x}) } dx}


The answer is 1.

This section requires Javascript.
You are seeing this because something didn't load right. We suggest you, (a) try refreshing the page, (b) enabling javascript if it is disabled on your browser and, finally, (c) loading the non-javascript version of this page . We're sorry about the hassle.

2 solutions

John M.
Sep 12, 2014

No mathematician in its right mind will tackle this integral head-on. So, we will tackle this integral butt-on.

Take its limbs out: First of all, notice that each of the groups of expressions on top match in some nature to the expressions on the bottom. The first easily distinguishable match is the combo of a a expressions:

( a + x a 2 3 x 2 3 x 6 ( a 6 x 6 ) + a x 2 3 a 2 x 3 a 2 3 2 a x 3 + x 2 3 ) ( a 6 x 6 ) \frac{(\frac { a+x }{ \sqrt [ 3 ]{ a^{ 2 } } -\sqrt [ 3 ]{ x^{ 2 } } } -\sqrt[6]{x}(\sqrt[6]{a}-\sqrt[6]{x})+\frac { \sqrt [ 3 ]{ ax^{ 2 } } -\sqrt [ 3 ]{ a^{ 2 }x } }{ \sqrt [ 3 ]{ a^{ 2 } } -2\sqrt [ 3 ]{ ax } +\sqrt [ 3 ]{ x^{ 2 } } })}{(\sqrt[6]a-\sqrt[6]{x})}

These are the legs. Now let's make a soup, shall we?: First of all, notice that x 6 \sqrt[6]{x} is an ulcer; that's not tasty.

( a + x a 2 3 x 2 3 + a x 2 3 a 2 x 3 a 2 3 2 a x 3 + x 2 3 ) ( a 6 x 6 ) x 6 . \frac{(\frac { a+x }{ \sqrt [ 3 ]{ a^{ 2 } } -\sqrt [ 3 ]{ x^{ 2 } } } +\frac { \sqrt [ 3 ]{ ax^{ 2 } } -\sqrt [ 3 ]{ a^{ 2 }x } }{ \sqrt [ 3 ]{ a^{ 2 } } -2\sqrt [ 3 ]{ ax } +\sqrt [ 3 ]{ x^{ 2 } } })}{(\sqrt[6]a-\sqrt[6]{x})}-\sqrt[6]{x}.

Way better. Ok, let's strip the bones:

a + x a 2 3 x 2 3 a x 2 3 a 2 x 3 a 2 3 2 a x 3 + x 2 3 \frac { a+x }{ \sqrt [ 3 ]{ a^{ 2 } } -\sqrt [ 3 ]{ x^{ 2 } } } -\frac { \sqrt [ 3 ]{ ax^{ 2 } } -\sqrt [ 3 ]{ a^{ 2 }x } }{ \sqrt [ 3 ]{ a^{ 2 } } -2\sqrt [ 3 ]{ ax } +\sqrt [ 3 ]{ x^{ 2 } } }

( a 3 ) 3 + ( x 3 ) 3 ( a 3 ) 2 ( x 3 ) 2 a x 3 ( a 3 x 3 ) ( a 3 x 3 ) 2 \Rightarrow \frac { (\sqrt [ 3 ]{ a } )^{ 3 }+(\sqrt [ 3 ]{ x } )^{ 3 } }{ (\sqrt [ 3 ]{ a } )^{ 2 }-(\sqrt [ 3 ]{ x } )^{ 2 } } -\frac { \sqrt [ 3 ]{ ax } (\sqrt [ 3 ]{ a } -\sqrt [ 3 ]{ x } ) }{ (\sqrt [ 3 ]{ a } -\sqrt [ 3 ]{ x } )^{ 2 } } (Let a = a 3 a=\sqrt[3]{a} and b = x 3 b=\sqrt[3]{x} )

( a + b ) ( a 2 a b b 2 ) a 2 b 2 a b a b \Rightarrow \frac { (a+b)(a^{ 2 }-ab-b^{ 2 }) }{ a^{ 2 }-b^{ 2 } } -\frac { ab }{ a-b }

( a + b ) ( a 2 a b b 2 ) a 2 b 2 a b a b a b a b a 2 b 2 a 2 b 2 \Rightarrow \frac { (a+b)(a^{ 2 }-ab-b^{ 2 }) }{ a^{ 2 }-b^{ 2 } } \cdot \frac { a-b }{ a-b } -\frac { ab }{ a-b } \cdot \frac { a^{ 2 }-b^{ 2 } }{ a^{ 2 }-b^{ 2 } }

( a 2 b 2 ) ( a 2 a b b 2 ) ( a 2 b 2 ) ( a b ) ( a 2 b 2 ) a b ( a 2 b 2 ) ( a b ) \Rightarrow \frac { (a^{ 2 }-b^{ 2 })(a^{ 2 }-ab-b^{ 2 }) }{ (a^{ 2 }-b^{ 2 })(a-b) } -\frac { (a^{ 2 }-b^{ 2 })ab }{ (a^{ 2 }-b^{ 2 })(a-b) }

( a 2 b 2 ) ( a 2 a b b 2 ) ( a 2 b 2 ) ( a b ) ( a 2 b 2 ) a b ( a 2 b 2 ) ( a b ) \Rightarrow \frac { (a^{ 2 }-b^{ 2 })(a^{ 2 }-ab-b^{ 2 }) }{ (a^{ 2 }-b^{ 2 })(a-b) } -\frac { (a^{ 2 }-b^{ 2 })ab }{ (a^{ 2 }-b^{ 2 })(a-b) }

( a 2 b 2 ) ( a 2 2 a b b 2 ) ( a 2 b 2 ) ( a b ) \Rightarrow \frac { (a^{ 2 }-b^{ 2 })(a^{ 2 }-2ab-b^{ 2 }) }{ (a^{ 2 }-b^{ 2 })(a-b) }

( a 2 b 2 ) ( a b ) 2 ( a 2 b 2 ) ( a b ) \Rightarrow \frac{(a^2-b^2)(a-b)^2}{(a^2-b^2)(a-b)}

a b \Rightarrow a-b

a 3 x 3 \Rightarrow \sqrt[3]{a}-\sqrt[3]{x}

Now insert back into the original expression:

a 3 x 3 a 6 x 6 x 6 \frac{\sqrt[3]{a}-\sqrt[3]{x}}{\sqrt[6]{a}-\sqrt[6]{x}}-\sqrt[6]{x}

a 2 b 2 a b b \Rightarrow \frac{a^2-b^2}{a-b}-b

( a b ) ( a + b ) a b b \Rightarrow \frac{(a-b)(a+b)}{a-b}-b

a + b b \Rightarrow a+b-b

a 6 \Rightarrow \sqrt[6]{a}



Ok, the legs are steaming. Now our integral looks like this:

0 a 1 6 a 6 tan ( cos 1 x ) ( 2 1 3 + 2 2 4 + ( x + 12 ) 2 6 x 8 3 ) x ( x x x 1 2 + 1 3 2 2 4 ) 1 x 2 d x . \int _{ 0 }^{ a^{ -\frac { 1 }{ 6 } } }{\sqrt[6]{a} \frac { \tan { (\cos ^{ -1 }{ x } ) } (\sqrt { \sqrt { 2 } -1 } \sqrt [ 4 ]{ 3+2\sqrt { 2 } } +\sqrt [ 3 ]{ (x+12)\sqrt { 2 } -6x-8 } )x }{ (\frac { x-\sqrt { x } }{ \sqrt { x } -1 } -\sqrt { \sqrt { 2 } +1 } \sqrt [ 4 ]{ 3-2\sqrt { 2 } } )\sqrt { 1-x^{ 2 } } } dx }.

Still fighting back. Ok, let's take its arms off: notice now we have an awkward expression on top and on bottom; let's take it out:

( 2 1 3 + 2 2 4 + ( x + 12 ) 2 6 x 8 3 ) ( x x x 1 2 + 1 3 2 2 4 ) \frac{(\sqrt { \sqrt { 2 } -1 } \sqrt [ 4 ]{ 3+2\sqrt { 2 } } +\sqrt [ 3 ]{ (x+12)\sqrt { 2 } -6x-8 } )}{(\frac { x-\sqrt { x } }{ \sqrt { x } -1 } -\sqrt { \sqrt { 2 } +1 } \sqrt [ 4 ]{ 3-2\sqrt { 2 } } )} .

Now, to cook the arms:

2 1 3 + 2 2 4 = ( 2 1 ) 2 ( 3 + 2 2 ) 4 = 1. \sqrt{\sqrt{2}-1}\sqrt[4]{3+2\sqrt{2}}=\sqrt[4]{(\sqrt{2}-1)^2(3+2\sqrt{2})}=1.

An analogous simplification may be applied in the denominator. The variable expression in the numerator:

( x + 12 ) x 6 x 8 3 \sqrt[3]{(x+12)\sqrt{x}-6x-8} x x + 12 x 6 x 8 3 \Rightarrow \sqrt[3]{x\sqrt{x}+12\sqrt{x}-6x-8}

g 3 6 g 2 + 12 g 8 3 \Rightarrow \sqrt[3]{g^3-6g^2+12g-8}

( g 2 ) 3 3 \Rightarrow \sqrt[3]{(g-2)^3} ( x 2 ) 3 3 \Rightarrow \sqrt[3]{(\sqrt{x}-2)^3}

x 2 \Rightarrow \sqrt{x}-2 .

The fraction x x x 1 \frac{x-\sqrt{x}}{\sqrt{x}-1} simplifies to: x ( x 1 ) x 1 = x \frac{\sqrt{x}(\sqrt{x}-1)}{\sqrt{x}-1}=\sqrt{x}

And thus, 1 + x 2 x 1 = x 1 x 1 = 1 \frac{1+\sqrt{x}-2}{\sqrt{x}-1}=\frac{\sqrt{x}-1}{\sqrt{x}-1}=1 .



No arms no legs; now it's face to face: 0 a 1 6 tan ( cos 1 x ) x 1 x 2 d x \int _{ 0 }^{ a^{ -\frac { 1 }{ 6 } } }{ \frac { \tan { (\cos ^{ -1 }{ x } ) } x }{ \sqrt { 1-x^{ 2 } } } dx }


Take its head off. Rewrite as follows: tan ( cos 1 x ) x 1 x 2 \tan { (\cos ^{ -1 }{ x } ) } \cdot \frac{x}{{ \sqrt { 1-x^{ 2 } } }}

Notice a familiarity between the fraction and the arctangent. In fact, it's an inobvious identity:

tan ( cos 1 x ) = 1 x 2 x \tan {(\cos^{-1}{x})}=\frac{\sqrt{1-x^2}}{x} .


Proof: Let angle φ = cos 1 x \varphi =\cos^{-1}{x} be bound between 0° and 180° (by the definition of the principal value of arccosine). We have cos φ = x \cos{\varphi}=x . Then,

sssss sssss

sin φ = + 1 x 2 \sin{\varphi}=+\sqrt{1-x^2} .

Thus,

tan φ = 1 x 2 x \tan{\varphi}=\frac{\sqrt{1-x^2}}{x} ,

or,

tan ( cos 1 x ) = 1 x 2 x \tan{(\cos^{-1}{x})}=\frac{\sqrt{1-x^2}}{x} .


And so, we have 1 (as long as x 0 x\neq 0 , which implies that a 0 a\neq 0 , which satisfies the initial condition).


And now, let's put it all together into a one big dish with raw torso:

0 a 1 6 1 1 a 6 d x = 0 a 1 6 a 6 d x \int _{0 }^{a^{-\frac{1}{6}} }{1\cdot 1\cdot \sqrt[6]{a}dx } =\int _{0 }^{a^{-\frac{1}{6}} }{ \sqrt[6]{a}dx }

And finally, IT'S DENTAL CLUBBERING TIME!!!

0 a 1 6 a 6 d x \int _{0 }^{a^{-\frac{1}{6}} }{ \sqrt[6]{a}dx }

= [ a 6 x ] 0 a 1 6 ={\left[ \sqrt[6]{a}x \right]}_{0}^{a^{-\frac{1}{6}}}

= a 6 a 1 6 a 6 0 = a 6 1 a 6 =\sqrt[6]{a}\cdot a^{-\frac{1}{6}}-\sqrt[6]{a}\cdot 0=\sqrt[6]{a}\cdot \frac{1}{\sqrt[6]{a}}

= 1 =\boxed{1}


Yhum...

Michael Mendrin
Sep 7, 2014

Oh COME on!

;)

.

John M. - 6 years, 9 months ago

A little update. Tell me now, if you didn't come by .., how much more difficult might this have been?

John M. - 6 years, 9 months ago

0 pending reports

×

Problem Loading...

Note Loading...

Set Loading...