Simplifying trigonometric identities

Geometry Level 3

1 + sin x cos x 1 + sin x + cos x \large \dfrac{1 + \sin x - \cos x}{1 + \sin x + \cos x}

Simplify the trigonometric expression above.

tan x 2 \tan \frac x2 tan 2 x \tan 2x tan 3 x \tan 3x tan 2 x \tan \frac 2x

This section requires Javascript.
You are seeing this because something didn't load right. We suggest you, (a) try refreshing the page, (b) enabling javascript if it is disabled on your browser and, finally, (c) loading the non-javascript version of this page . We're sorry about the hassle.

2 solutions

Ahmad Saad
Apr 13, 2016

Hassan Abdulla
Mar 3, 2020

1 + sin ( x ) cos ( x ) 1 + sin ( x ) + cos ( x ) = 1 cos ( x ) + sin ( x ) 1 + cos ( x ) + sin ( x ) = 1 cos ( x ) sin ( x ) + 1 1 + cos ( x ) sin ( x ) + 1 1 cos ( x ) = 2 sin 2 ( x / 2 ) 1 + cos ( x ) = 2 cos 2 ( x / 2 ) sin ( x ) = 2 sin ( x / 2 ) cos ( x / 2 ) 1 cos ( x ) sin ( x ) + 1 1 + cos ( x ) sin ( x ) + 1 = 2 sin 2 ( x / 2 ) 2 sin ( x / 2 ) cos ( x / 2 ) + 1 2 cos 2 ( x / 2 ) 2 sin ( x / 2 ) cos ( x / 2 ) + 1 = tan ( x / 2 ) + 1 cot ( x / 2 ) + 1 tan ( x / 2 ) tan ( x / 2 ) = ( tan ( x / 2 ) + 1 ) tan ( x / 2 ) 1 + tan ( x / 2 ) = tan ( x / 2 ) \begin{aligned} \frac{1+\sin(x)-\cos(x)}{1+\sin(x)+\cos(x)} &= \frac{1-\cos(x)+\sin(x)}{1+\cos(x)+\sin(x)} \\ &= \frac{\frac{1-\cos(x)}{\sin(x)} +1}{\frac{1+\cos(x)}{\sin(x)} +1} \\ &\color{#D61F06} 1-\cos(x) = 2 \sin^2(x/2) \\ &\color{#D61F06} 1+\cos(x) = 2 \cos^2(x/2) \\ &\color{#D61F06} \sin(x) = 2 \sin(x/2) \cos(x/2)\\ \frac{\frac{1-\cos(x)}{\sin(x)} +1}{\frac{1+\cos(x)}{\sin(x)} +1} &= \frac{\frac{\color{#D61F06} 2 \sin^2(x/2)}{\color{#D61F06} 2 \sin(x/2) \cos(x/2)} +1}{\frac{\color{#D61F06} 2 \cos^2(x/2)}{\color{#D61F06} 2 \sin(x/2) \cos(x/2)} +1}\\ & = \frac{\tan(x/2) + 1 }{\cot(x/2)+1} \cdot \color{#D61F06} \frac{\tan(x/2)}{\tan(x/2)} \\ & = \frac{\left ( \tan(x/2) + 1 \right ) \tan(x/2) }{1+\tan(x/2)} = \tan(x/2) \end{aligned}

0 pending reports

×

Problem Loading...

Note Loading...

Set Loading...