Find your telescope

Algebra Level 2

Calculate the sum of 1 2 ! + 2 3 ! + 3 4 ! + . . . . . . + 99 100 ! \frac { 1 }{ 2! } +\frac { 2 }{ 3! } +\frac { 3 }{ 4! } +......+\frac { 99 }{ 100! }

Assumptions

  • Take the value of 100! as 100 for the final calculation purpose.


The answer is 0.99.

This section requires Javascript.
You are seeing this because something didn't load right. We suggest you, (a) try refreshing the page, (b) enabling javascript if it is disabled on your browser and, finally, (c) loading the non-javascript version of this page . We're sorry about the hassle.

1 solution

Max B
May 8, 2014

2 1 2 ! + 3 1 3 ! + . . . . . + 100 1 100 ! = ( 1 1 ! 1 2 ! ) + ( 1 2 ! 1 3 ! ) + . . . . . . . . . . + ( 1 99 ! 1 100 ! ) = 1 1 100 ! n o w t a k e 100 ! a s 100 = 0.99 \frac { 2-1 }{ 2! } +\frac { 3-1 }{ 3! } +.....+\frac { 100-1 }{ 100! } \\ =\left( \frac { 1 }{ 1! } -\frac { 1 }{ 2! } \right) +\left( \frac { 1 }{ 2! } -\frac { 1 }{ 3! } \right) +..........+\left( \frac { 1 }{ 99! } -\frac { 1 }{ 100! } \right) \\ =1-\frac { 1 }{ 100! } \\ now\quad take\quad 100!\quad as\quad 100\\ =0.99\\

who changed the title...calvin is it you ?????

Max B - 7 years, 1 month ago

0 pending reports

×

Problem Loading...

Note Loading...

Set Loading...