A deceivingly small integral

Calculus Level 5

I = 0 ( ln x ) 4 ( 1 + x 2 ) 3 d x \large I=\int^{\infty}_0\frac{(\ln x)^4}{(1+x^2)^3}\, dx

It is given that I I above can be expressed in the form of A π B C + D π E F \dfrac{A\pi^B}{C}+\dfrac{D\pi^E}{F} , where A , B , C , D , E A, B, C, D, E and F F are positive integers that satisfy gcd ( A , C ) = gcd ( D , F ) = 1. \gcd(A, C)=\gcd(D, F)=1. Find the value of A + B + C + D + E + F . A+B+C+D+E+F.


The answer is 298.

This section requires Javascript.
You are seeing this because something didn't load right. We suggest you, (a) try refreshing the page, (b) enabling javascript if it is disabled on your browser and, finally, (c) loading the non-javascript version of this page . We're sorry about the hassle.

2 solutions

Mark Hennings
Nov 2, 2016

We can use beta functions another way, noting that the integral is equal to f ( 0 ) f''''(0) , where f ( a ) = 0 x a ( 1 + x 2 ) 3 d x = 1 2 B ( a + 1 2 , 5 a 2 ) = 1 4 Γ ( a + 1 2 ) Γ ( 5 a 2 ) f(a) \; = \; \int_0^\infty \frac{x^a}{(1+x^2)^3}\,dx \; =\; \tfrac12B\big(\tfrac{a+1}{2},\tfrac{5-a}{2}\big) \; = \; \tfrac14\Gamma\big(\tfrac{a+1}{2}\big)\Gamma\big(\tfrac{5-a}{2}\big) obtaining, after much simplification that the integral is 3 16 π 3 + 15 256 π 5 \tfrac{3}{16}\pi^3 + \tfrac{15}{256}\pi^5 which makes the answer 298 \boxed{298} .

Wow, that's a nice way to get out ( ln x ) 4 (\ln x ) ^ 4 !

Calvin Lin Staff - 4 years, 7 months ago
敬全 钟
Oct 29, 2016

First, we consider the substitution x = tan θ x=\tan \theta so that d x d θ = sec 2 θ , \frac{dx}{d\theta}=\sec^2\theta, and the integral becomes I = 0 ln 4 x ( 1 + x 2 ) 3 d x = 0 π 2 ln 4 ( tan θ ) cos 4 θ d θ . I=\int^{\infty}_0\frac{\ln^4x}{(1+x^2)^3}\ dx=\int^{\frac{\pi}{2}}_0\ln^4(\tan \theta)\cos^4\theta\ d\theta. Then, since ln 4 ( tan θ ) = ( ln ( sin θ ) ln ( cos θ ) ) 4 = ln 4 ( sin θ ) + 4 ln 3 ( sin θ ) ln ( cos θ ) + 6 ln 2 ( cos θ ) ln 2 ( sin θ ) + 4 ln ( sin θ ) ln 3 ( cos θ ) + ln 4 ( cos θ ) , \begin{aligned}\ln^4(\tan \theta)&=&(\ln(\sin\theta)-\ln(\cos\theta))^4\\&=&\ln^4(\sin\theta)+4\ln^3(\sin\theta)\ln(\cos\theta)+6\ln^2(\cos\theta)\ln^2(\sin\theta)+4\ln(\sin\theta)\ln^3(\cos\theta)+\ln^4(\cos\theta),\end{aligned} we have I = 0 π 2 ( ln 4 ( sin θ ) + 4 ln 3 ( sin θ ) ln ( cos θ ) + 6 ln 2 ( cos θ ) ln 2 ( sin θ ) + 4 ln ( sin θ ) ln 3 ( cos θ ) + ln 4 ( cos θ ) ) cos 4 θ d θ = 0 π 2 ln 4 ( sin θ ) cos 4 θ d θ + 0 π 2 4 ln 3 ( sin θ ) ln ( cos θ ) cos 4 θ d θ + 0 π 2 6 ln 2 ( cos θ ) ln 2 ( sin θ ) cos 4 θ d θ + 0 π 2 4 ln ( sin θ ) ln 3 ( cos θ ) cos 4 θ d θ + 0 π 2 ln 4 ( cos θ ) cos 4 θ d θ . \begin{aligned}I&=&\int^{\frac{\pi}{2}}_0\left(\ln^4(\sin\theta)+4\ln^3(\sin\theta)\ln(\cos\theta)+6\ln^2(\cos\theta)\ln^2(\sin\theta)+4\ln(\sin\theta)\ln^3(\cos\theta)+\ln^4(\cos\theta)\right)\cos^4\theta\ d\theta\\&=&\int^{\frac{\pi}{2}}_0\ln^4(\sin\theta)\cos^4\theta\ d\theta+\int^{\frac{\pi}{2}}_04\ln^3(\sin\theta)\ln(\cos\theta)\cos^4\theta\ d\theta+\int^{\frac{\pi}{2}}_06\ln^2(\cos\theta)\ln^2(\sin\theta)\cos^4\theta\ d\theta\\&&+\int^{\frac{\pi}{2}}_04\ln(\sin\theta)\ln^3(\cos\theta)\cos^4\theta\ d\theta+\int^{\frac{\pi}{2}}_0\ln^4(\cos\theta)\cos^4\theta\ d\theta.\end{aligned} Now, we look at each individual integrals: it seems that we can use Beta function to calculate it. However, this is a long and arduous process, so I will not show all the intermediate calculations. Anyways, by applying Beta function, the integral becomes I = 1 32 [ 4 x 4 B ( x , y ) + 4 × 4 x 3 y B ( x , y ) + 6 × 4 x 2 y 2 B ( x , y ) + 4 × 4 x y 3 B ( x , y ) + 4 y 4 B ( x , y ) ] x = 1 2 , y = 5 2 = 3 16 π 3 + 15 256 π 5 . \begin{aligned}I&=&\frac{1}{32}\left[\frac{\partial^4}{\partial x^4}B(x,y)+4\times\frac{\partial^4}{\partial x^3\partial y}B(x,y)+6\times\frac{\partial^4}{\partial x^2\partial y^2}B(x,y)+4\times\frac{\partial^4}{\partial x\partial y^3}B(x,y)+\frac{\partial^4}{\partial y^4}B(x,y)\right]_{x=\frac{1}{2}, y=\frac{5}{2}}\\&=&\frac{3}{16}\pi^3+\frac{15}{256}\pi^5.\end{aligned}

Thus, A = 3 , B = 3 , C = 16 , D = 15 , E = 5 , F = 256 A=3, B=3, C=16, D=15, E=5, F=256 , giving the final answer as 298 . \fbox{298}.


Note: this solution is extremely tedious and time-consuming, any better and more elegant solutions than this are welcomed. Thanks.

Complex analysis would somewhat reduce the efforts , I can't figure out any more shorter real methods to evaluate this.

Aditya Narayan Sharma - 4 years, 7 months ago

0 pending reports

×

Problem Loading...

Note Loading...

Set Loading...