0.9 = 1

Algebra Level 1

0.9999999 (keeps on going for ever, recurring) is equal to 1.

True False

This section requires Javascript.
You are seeing this because something didn't load right. We suggest you, (a) try refreshing the page, (b) enabling javascript if it is disabled on your browser and, finally, (c) loading the non-javascript version of this page . We're sorry about the hassle.

4 solutions

1 9 = 0.11111......... \dfrac {1}{9} = 0.11111.........

1 = 9 × ( 0.11111...... ) = 0.9999....... 1 =9\times (0.11111......) = 0.9999.......

Hence, 0.9999....... = 1 0.9999.......=1

A N S W E R : T R U E ANSWER:\boxed {TRUE}

Parth Sankhe
Nov 13, 2018

If x = 0.9999... x=0.9999... ,

10 x = 9.9999... 10x=9.9999...

Subtracting the two equations, 9 x = 9 9x=9 , x = 1 x=1

Etienne **
Nov 13, 2018

1 ÷ 3 = 0.333 (recurring). 0.333 (recurring) x 3 = 1 or 0.999 (recurring). Can be proved other ways too.

Jordan Cahn
Nov 14, 2018

0.999 = 9 10 + 9 100 + = i = 1 9 1 0 i = 9 10 i = 0 1 1 0 i The sum converges since 1 < 1 10 < 1 = 9 10 × 1 1 1 10 = 9 10 × 10 9 = 1 \begin{aligned} 0.999\ldots &= \frac{9}{10} + \frac{9}{100} + \cdots \\ &= \sum_{i=1}^\infty \frac{9}{10^i} \\ &= \frac{9}{10}\sum_{i=0}^\infty \frac{1}{10^i} && \color{#3D99F6}\text{The sum converges since }-1<\frac{1}{10}<1 \\ &= \frac{9}{10} \times \frac{1}{1-\frac{1}{10}} \\ &= \frac{9}{10} \times \frac{10}{9} = \boxed{1} \end{aligned}


0.999 = lim n 99 9 n 9 s 1 00 0 n 0 s = lim n 1 0 n 1 1 0 n = lim n ( 1 1 1 0 n ) lim n 1 1 0 n = 0 = 1 0 = 1 \begin{aligned} 0.999\ldots &= \lim_{n\to\infty} \frac{\overbrace{99\cdots9}^{n\text{ }9\text{s}}}{1\underbrace{00\cdots0}_{n\text{ }0\text{s}}} \\ &= \lim_{n\to\infty} \frac{10^n-1}{10^n} \\ &= \lim_{n\to\infty} \left(1-\frac{1}{10^n}\right) && \color{#3D99F6} \lim_{n\to\infty}\frac{1}{10^n} = 0 \\ &= 1 - 0 = \boxed{1} \end{aligned}

0 pending reports

×

Problem Loading...

Note Loading...

Set Loading...