1(?) + 10(?) + 100(?)

Algebra Level 2

Find the sum of the solutions to the logarithmic equation x log x = 1 0 2 3 log x + 2 ( log x ) 2 \large x^{\log x} = 10^{2 - 3 \log x + 2 (\log x )^{2}} where log x \log x is the logarithm of x x to the base 10 10 .

110 10 100 111

This section requires Javascript.
You are seeing this because something didn't load right. We suggest you, (a) try refreshing the page, (b) enabling javascript if it is disabled on your browser and, finally, (c) loading the non-javascript version of this page . We're sorry about the hassle.

1 solution

Md Mehedi Hasan
Nov 2, 2017

x log x = 1 0 2 3 log x + 2 ( log x ) 2 l o g x l o g x = 2 3 l o g x + 2 ( l o g x ) 2 l o g x × l o g x = 2 3 l o g x + 2 ( l o g x ) 2 ( l o g x ) 2 = 2 3 l o g x + 2 ( l o g x ) 2 ( l o g x ) 2 3 l o g x + 2 = 0 y 2 3 y + 2 = 0 Let, log x=y ( y 2 ) ( y 1 ) = 0 y = 2 o r , y = 1 l o g x = 2 l o g x = 1 x = 100 x = 10 \quad \LARGE {\quad x^{\log x} = 10^{2 - 3 \log x + 2 (\log x )^{2}} \\ \Rightarrow log x^{log x}=2-3log x+2(log x)^2 \\ \Rightarrow log x\times log x=2-3log x+2(log x)^2 \\ \Rightarrow (log x)^2=2-3log x+2(log x)^2\\ \Rightarrow (log x)^2-3log x+2=0\\ \Rightarrow y^2-3y+2=0 \quad \boxed{\color{#3D99F6}\text{Let, log x=y}}\\ \Rightarrow (y-2)(y-1)=0\\ \Rightarrow y=2\quad \quad \quad \quad \quad or, y=1\\ \Rightarrow log x=2\quad \quad \Rightarrow log x=1\\ \therefore x=100\quad \quad \quad\therefore x=10}

Now the summation of solution is = 100 + 10 = 110 =100+10=\boxed{110}

excellently solved!

Mohammad Khaza - 3 years, 7 months ago

0 pending reports

×

Problem Loading...

Note Loading...

Set Loading...