Consider the equation x 5 + y 7 = 7 5 for x > 0 ; y > 0 . Suppose the number of integer solution is A with the set of integer pairs ( x i , y i ) being ( x 1 , y 1 ) , ( x 2 , y 2 ) , . . . . ( x A , y A ) . Find ∑ i = 1 A x i + ∑ i = 1 A y i .
Find other problems of this set
This section requires Javascript.
You are seeing this because something didn't load right. We suggest you, (a) try
refreshing the page, (b) enabling javascript if it is disabled on your browser and,
finally, (c)
loading the
non-javascript version of this page
. We're sorry about the hassle.
Great usage of Simon's Favorite Factoring Trick.
Problem Loading...
Note Loading...
Set Loading...
x 5 + y 7 ⇒ 3 5 x + 4 9 y ⇒ 5 x y − 3 5 x − 4 9 y + 3 4 3 ⇒ ( x − 7 ) ( 5 y − 4 9 ) = 7 5 = 5 x y = 3 4 3 = 3 4 3
3 4 3 can be written as a product of 2 integers in 8 ways:
( ± 1 , ± 3 4 3 ) , ( ± 3 4 3 , ± 1 ) , ( ± 7 , ± 4 9 ) , ( ± 4 9 , ± 7 ) .
x − 7 = 1 , 5 y − 4 9 = 3 4 3 ⇒ x = 8 , y = 5 3 9 2
x − 7 = 3 4 3 , 5 y − 4 9 = 1 ⇒ x = 3 5 0 , y = 1 0
x − 7 = 7 , 5 y − 4 9 = 4 9 ⇒ x = 1 4 , y = 5 9 8
x − 7 = 4 9 , 5 y − 4 9 = 7 ⇒ x = 5 6 , y = 5 5 6
x − 7 = − 1 , 5 y − 4 9 = − 3 4 3 ⇒ x = 6 , y = 5 − 2 9 4
x − 7 = − 3 4 3 , 5 y − 4 9 = − 1 ⇒ x = − 3 3 6 , y = 5 4 8
x − 7 = − 7 , 5 y − 4 9 = − 4 9 ⇒ x = 0 , y = 0
x − 7 = − 4 9 , 5 y − 4 9 = − 7 ⇒ x = − 4 2 , y = 5 4 2
Of the above 8 cases only x = 3 5 0 , y = 1 0 satisfy x > 0 , y > 0 .
Hence, ∑ i = 1 A x i + ∑ i = 1 A y i = 3 5 0 + 1 0 = 3 6 0