#1

Consider the equation 5 x + 7 y = 5 7 \frac{5}{x} + \frac{7}{y} = \frac{5}{7} for x > 0 ; y > 0 x > 0 ; y > 0 . Suppose the number of integer solution is A with the set of integer pairs ( x i , y i ) (x_i,y_i) being ( x 1 , y 1 ) , ( x 2 , y 2 ) , . . . . ( x A , y A ) (x_1,y_1),(x_2,y_2),....(x_A,y_A) . Find i = 1 A x i + i = 1 A y i \sum_{i=1}^{A} x_i + \sum_{i=1}^{A} y_i .

Find other problems of this set

1490 360 No integer solution possible 910

This section requires Javascript.
You are seeing this because something didn't load right. We suggest you, (a) try refreshing the page, (b) enabling javascript if it is disabled on your browser and, finally, (c) loading the non-javascript version of this page . We're sorry about the hassle.

1 solution

Krutarth Patel
Nov 21, 2015

5 x + 7 y = 5 7 35 x + 49 y = 5 x y 5 x y 35 x 49 y + 343 = 343 ( x 7 ) ( 5 y 49 ) = 343 \begin{aligned} \frac{5}{x} + \frac{7}{y} & = \frac{5}{7} \\ \Rightarrow 35x + 49y & = 5xy \\ \Rightarrow 5xy - 35x - 49y + 343 & = 343 \\ \Rightarrow (x - 7)(5y - 49) & = 343 \end{aligned}

343 343 can be written as a product of 2 2 integers in 8 8 ways:

( ± 1 , ± 343 ) , ( ± 343 , ± 1 ) , ( ± 7 , ± 49 ) , ( ± 49 , ± 7 ) (\pm{1}, \pm{343}), (\pm{343}, \pm{1}), (\pm{7}, \pm{49}), (\pm{49}, \pm{7}) .

  1. x 7 = 1 , 5 y 49 = 343 x = 8 , y = 392 5 x - 7 = 1, 5y - 49 = 343 \Rightarrow x = 8, y = \frac{392}{5}

  2. x 7 = 343 , 5 y 49 = 1 x = 350 , y = 10 x - 7 = 343, 5y - 49 = 1 \Rightarrow x = 350, y = 10

  3. x 7 = 7 , 5 y 49 = 49 x = 14 , y = 98 5 x - 7 = 7, 5y - 49 = 49 \Rightarrow x = 14, y = \frac{98}{5}

  4. x 7 = 49 , 5 y 49 = 7 x = 56 , y = 56 5 x - 7 = 49, 5y - 49 = 7 \Rightarrow x = 56, y = \frac{56}{5}

  5. x 7 = 1 , 5 y 49 = 343 x = 6 , y = 294 5 x - 7 = -1, 5y - 49 = -343 \Rightarrow x = 6, y = \frac{-294}{5}

  6. x 7 = 343 , 5 y 49 = 1 x = 336 , y = 48 5 x - 7 = -343, 5y - 49 = -1 \Rightarrow x = -336, y = \frac{48}{5}

  7. x 7 = 7 , 5 y 49 = 49 x = 0 , y = 0 x - 7 = -7, 5y - 49 = -49 \Rightarrow x = 0, y = 0

  8. x 7 = 49 , 5 y 49 = 7 x = 42 , y = 42 5 x - 7 = -49, 5y - 49 = -7 \Rightarrow x = -42, y = \frac{42}{5}

Of the above 8 cases only x = 350 , y = 10 x = 350, y = 10 satisfy x > 0 , y > 0 x > 0, y > 0 .

Hence, i = 1 A x i + i = 1 A y i = 350 + 10 = 360 \sum_{i=1}^{A} x_i + \sum_{i=1}^{A} y_i = 350 + 10 = \boxed{360}

Moderator note:

Great usage of Simon's Favorite Factoring Trick.

0 pending reports

×

Problem Loading...

Note Loading...

Set Loading...