Number of 1s = 4 0 3 4 1 1 1 … 1 1 1 − Number of 2s = 2 0 1 7 2 2 2 … 2 2 2 Find the sum of the digits of the number above.
This section requires Javascript.
You are seeing this because something didn't load right. We suggest you, (a) try
refreshing the page, (b) enabling javascript if it is disabled on your browser and,
finally, (c)
loading the
non-javascript version of this page
. We're sorry about the hassle.
N = # of 1s = 4034 1 1 1 . . . 1 1 1 − # of 2s = 2017 2 2 2 . . . 2 2 2 = 9 1 0 4 0 3 4 − 1 − 9 2 ( 1 0 2 0 1 7 − 1 ) = 9 ( 1 0 2 0 1 7 − 1 ) ( 1 0 2 0 1 7 + 1 ) − 2 ( 1 0 2 0 1 7 − 1 ) = 9 ( 1 0 2 0 1 7 − 1 ) ( 1 0 2 0 1 7 + 1 − 2 ) = 9 ( 1 0 2 0 1 7 − 1 ) 2 = 3 1 0 2 0 1 7 − 1 = 3 9 9 9 . . . 9 9 9 # of 9s = 2017 = # of 3s = 2017 3 3 3 . . . 3 3 3
Therefore, the sum of digits of N is 3 × 2 0 1 7 = 6 0 5 1 .
A = 4 0 3 4 1 1 1 . . . 1 1 1 − 2 0 1 7 2 2 2 . . . 2 2 2 A = 9 1 ( 1 0 4 0 3 4 − 1 ) − 9 2 ( 1 0 2 0 1 7 − 1 ) A = 9 1 ( 1 0 2 0 1 7 + 1 ) ( 1 0 2 0 1 7 − 1 ) − 9 2 ( 1 0 2 0 1 7 − 1 ) A = 9 1 ( 1 0 2 0 1 7 − 1 ) { 1 0 2 0 1 7 + 1 − 2 } A = 9 1 ( 1 0 2 0 1 7 − 1 ) 2 A = 3 1 ⋅ ( 1 0 2 0 1 7 − 1 ) A = 3 1 ⋅ 2 0 1 7 9 9 9 . . . 9 9 9 A = 2 0 1 7 3 3 3 . . . 3 3 3
Thus, the sum of the digit digits of A is 2 0 1 7 ⋅ 3 = 6 0 5 1 .
We will show that: 2 k 1 1 1 … 1 1 1 = k 2 2 2 … 2 2 2 + k 3 3 3 … 3 3 3 2
k 2 2 2 … 2 2 2 + k 3 3 3 … 3 3 3 2 = 2 ∗ k 1 1 1 … 1 1 1 + ( 3 ∗ k 1 1 1 … 1 1 1 ) 2 = k 1 1 1 … 1 1 1 ( 2 + k 9 9 9 … 9 9 9 ) = k 1 1 1 … 1 1 1 ∗ ( 1 k 0 0 0 … 0 0 0 + 1 ) = k 1 1 1 … 1 1 1 k 0 0 0 … 0 0 0 + k 1 1 1 … 1 1 1 = 2 k 1 1 1 … 1 1 1
The answer is: 2 0 1 7 ∗ 3 = 6 0 5 1
Problem Loading...
Note Loading...
Set Loading...
A = 4 0 3 4 1 1 1 . . . 1 1 1 − 2 0 1 7 2 2 2 . . . 2 2 2 = 4 0 3 4 1 1 1 . . . 1 1 1 − 2 0 1 7 1 1 1 . . . 1 1 1 − 2 0 1 7 1 1 1 . . . 1 1 1 = 2 0 1 7 1 1 1 . . . 1 1 1 2 0 1 7 0 0 0 . . . 0 0 0 − 2 0 1 7 1 1 1 . . . 1 1 1 = 2 0 1 7 1 1 1 . . . 1 1 1 × ( 1 2 0 1 7 0 0 0 . . . 0 0 0 − 1 ) = 2 0 1 7 1 1 1 . . . 1 1 1 × 2 0 1 7 9 9 9 . . . 9 9 9 = 2 0 1 7 1 1 1 . . . 1 1 1 × 2 0 1 7 1 1 1 . . . 1 1 1 × 9 = 2 0 1 7 1 1 1 . . . 1 1 1 × 3 = 2 0 1 7 3 3 3 . . . 3 3 3
Hence, the sum of digits is 3 × 2 0 1 7 = 6 0 5 1 .