1 and 2

111 111 Number of 1s = 4034 222 222 Number of 2s = 2017 \sqrt{\underbrace{111\dots111}_{\text{Number of 1s }= \ 4034}-\underbrace{222\dots222}_{\text{Number of 2s }= \ 2017 }} Find the sum of the digits of the number above.


The answer is 6051.

This section requires Javascript.
You are seeing this because something didn't load right. We suggest you, (a) try refreshing the page, (b) enabling javascript if it is disabled on your browser and, finally, (c) loading the non-javascript version of this page . We're sorry about the hassle.

4 solutions

Uros Stojkovic
Jul 5, 2017

A = 111...111 4034 222...222 2017 = 111...111 4034 111...111 2017 111...111 2017 = 111...111 2017 000...000 2017 111...111 2017 = 111...111 2017 × ( 1 000...000 2017 1 ) = 111...111 2017 × 999...999 2017 = 111...111 2017 × 111...111 2017 × 9 = 111...111 2017 × 3 = 333...333 2017 \begin{aligned} A & = \sqrt{\underbrace{111...111}_{4034}-\underbrace{222...222}_{2017}}=\sqrt{\underbrace{111...111}_{4034}-\underbrace{111...111}_{2017}-\underbrace{111...111}_{2017}} \\ &= \sqrt{\underbrace{111...111}_{2017}\underbrace{000...000}_{2017}-\underbrace{111...111}_{2017}} \\ & =\sqrt{\underbrace{111...111}_{2017}\times (1\underbrace{000...000}_{2017}-1)} \\ & =\sqrt{\underbrace{111...111}_{2017}\times \underbrace{999...999}_{2017}} \\ & = \sqrt{\underbrace{111...111}_{2017}\times \underbrace{111...111}_{2017}\times 9} \\ & = \underbrace{111...111}_{2017}\times 3 \\ & =\underbrace{333...333}_{2017} \end{aligned}

Hence, the sum of digits is 3 × 2017 = 6051 3\times 2017=\boxed{6051} .

N = 111...111 # of 1s = 4034 222...222 # of 2s = 2017 = 1 0 4034 1 9 2 ( 1 0 2017 1 ) 9 = ( 1 0 2017 1 ) ( 1 0 2017 + 1 ) 2 ( 1 0 2017 1 ) 9 = ( 1 0 2017 1 ) ( 1 0 2017 + 1 2 ) 9 = ( 1 0 2017 1 ) 2 9 = 1 0 2017 1 3 = 999...999 # of 9s = 2017 3 = 333...333 # of 3s = 2017 \begin{aligned} N & = \sqrt{\underbrace{111...111}_{\text{\# of 1s = 4034}} - \underbrace{222...222}_{\text{\# of 2s = 2017}}} \\ & = \sqrt{\frac {10^{4034}-1}9 - \frac {2(10^{2017}-1)}9} \\ & = \sqrt{\frac {(10^{2017}-1)(10^{2017}+1)- 2(10^{2017}-1)}9} \\ & = \sqrt{\frac {(10^{2017}-1)(10^{2017}+1- 2)}9} \\ & = \sqrt{\frac {(10^{2017}-1)^2}9} \\ & = \frac {10^{2017}-1}3 = \frac {\overbrace{999...999}^{\text{\# of 9s = 2017}}}3 = \underbrace{333...333}_{\text{\# of 3s = 2017}} \end{aligned}

Therefore, the sum of digits of N N is 3 × 2017 = 6051 3 \times 2017 = \boxed{6051} .

A = 111...111 4034 222...222 2017 A = 1 9 ( 10 4034 1 ) 2 9 ( 10 2017 1 ) A = 1 9 ( 10 2017 + 1 ) ( 10 2017 1 ) 2 9 ( 10 2017 1 ) A = 1 9 ( 10 2017 1 ) { 10 2017 + 1 2 } A = 1 9 ( 10 2017 1 ) 2 A = 1 3 ( 10 2017 1 ) A = 1 3 999...999 2017 A = 333...333 2017 A=\underbrace { 111...111 }_{ 4034 } -\underbrace { 222...222 }_{ 2017 } \\ A=\frac { 1 }{ 9 } \left( { 10 }^{ 4034 }-1 \right) -\frac { 2 }{ 9 } \left( { 10 }^{ 2017 }-1 \right) \\ A=\frac { 1 }{ 9 } \left( { 10 }^{ 2017 }+1 \right) \left( { 10 }^{ 2017 }-1 \right) -\frac { 2 }{ 9 } \left( { 10 }^{ 2017 }-1 \right) \\ A=\frac { 1 }{ 9 } \left( { 10 }^{ 2017 }-1 \right) \left\{ { 10 }^{ 2017 }+1-2 \right\} \\ A=\frac { 1 }{ 9 } { \left( { 10 }^{ 2017 }-1 \right) }^{ 2 }\\ \sqrt { A } =\frac { 1 }{ 3 } \cdot \left( { 10 }^{ 2017 }-1 \right) \\ \sqrt { A } =\frac { 1 }{ 3 } \cdot \underbrace { 999...999 }_{ 2017 } \\ \sqrt { A } =\underbrace { 333...333 }_{ 2017 }

Thus, the sum of the digit digits of A \sqrt { A } is 2017 3 = 6051 2017 \cdot 3 = 6051 .

We will show that: 111 111 2 k = 222 222 k + 333 33 3 2 k \underbrace{111\dots111}_{2k}=\underbrace{222\dots222}_{k}+\underbrace{333\dots333^2}_{k}

222 222 k + 333 33 3 2 k = 2 111 111 k + ( 3 111 111 k ) 2 = 111 111 k ( 2 + 999 999 k ) = 111 111 k ( 1 000 000 k + 1 ) = 111 111 k 000 000 k + 111 111 k = 111 111 2 k \underbrace{222\dots222}_{k}+\underbrace{333\dots333^2}_{k}=2*\underbrace{111\dots111}_{k}+(3*\underbrace{111\dots111}_{k})^2=\underbrace{111\dots111}_{k}(2+\underbrace{999\dots999}_{k})=\underbrace{111\dots111}_{k}*(1\underbrace{000\dots000}_{k}+1)=\underbrace{111\dots111}_{k}\underbrace{000\dots000}_{k}+\underbrace{111\dots111}_{k}=\underbrace{111\dots111}_{2k}

The answer is: 2017 3 = 6051 2017*3=\boxed{6051}

0 pending reports

×

Problem Loading...

Note Loading...

Set Loading...