Definite Integrals (1)

Calculus Level 3

π / 2 π / 2 cos x 1 + e x d x = ? \large \int_{-\pi /2}^{\pi /2} \dfrac{ \cos x}{1+e^x} \, dx =\, ?


The answer is 1.

This section requires Javascript.
You are seeing this because something didn't load right. We suggest you, (a) try refreshing the page, (b) enabling javascript if it is disabled on your browser and, finally, (c) loading the non-javascript version of this page . We're sorry about the hassle.

2 solutions

I = π 2 π 2 cos x 1 + e x d x I = \displaystyle \int_{\frac{-\pi}{2}}^{\frac{\pi}{2}} \dfrac{\cos x}{1+e^{x}} dx
I = 0 π 2 cos x 1 + e x + cos x 1 + e x d x = 0 π 2 cos x d x I =\displaystyle \int_{0}^{\frac{\pi}{2}}\dfrac{\cos x}{1+e^{x}} +\dfrac{\cos x}{1+e^{-x}} dx = \displaystyle \int_{0}^{\frac{\pi}{2}} \cos x dx

I = [ sin x ] 0 π 2 = 1 0 = 1 I = \displaystyle \left[ \sin x \right]_{0}^{\frac{\pi}{2}} = 1 - 0 = 1

The Extremer
Aug 5, 2019

I = π 2 π 2 cos x 1 + e x d x Using property of definite integral, I = π 2 π 2 cos ( x ) 1 + e x d x = π 2 π 2 e x cos x 1 + e x d x 2 I = π 2 π 2 cos x d x I = 1 2 sin x π 2 π 2 = 1 + 1 1 = 1 \displaystyle I = \int_{-\frac{\pi}{2}} ^{\frac{\pi}{2}} \frac{\cos x}{1+e^x} dx \\ \text{Using property of definite integral, } \\ I = \int_{-\frac{\pi}{2}} ^{\frac{\pi}{2}} \frac{\cos{(-x)}}{1+e^{-x}} dx \\ = \int_{-\frac{\pi}{2}} ^{\frac{\pi}{2}} \frac{e^x\cos{x}}{1+e^{x}} dx \\ \therefore 2I = \int_{-\frac{\pi}{2}} ^{\frac{\pi}{2}} \cos x \ dx \\ \therefore I = \frac{1}{2} \sin x \Bigr|_{-\frac{\pi}{2}} ^{\frac{\pi}{2}} \\ = \frac{1+1}{1} = \boxed{1}

0 pending reports

×

Problem Loading...

Note Loading...

Set Loading...