The Positive Integers A and B Which
B
A
,
B
−
1
A
−
1
,
B
−
2
A
−
2
give an integer
A
=
B
=
(
1
,
2
,
3
)
For example
:
3
9
gives integer and
3
−
1
9
−
1
also gives integer
and this only 2 fractions
-
The Question Is
What is the smallest 2 integers which
B
A
,
B
−
1
A
−
1
,
B
−
2
A
−
2
(3 Fractions)
gives integer?
A
=
B
=
(
1
,
2
,
3
)
-
The awnser is the Sum of
A
,
B
1 X m − 1 X n − 1 = Integer, When m n = Integer
Also X m X n = X n − m = an integer
So 2 x m − 2 2 X n − 2 = 2 × ( 2 x m − 1 − 1 ) 2 × ( 2 X n − 1 − 1 ) = 2 x m − 1 − 1 2 X n − 1 − 1 ⟶ Because it is same to equation 1
So we can apply the same rule which 2 x m − 2 2 X n − 2 = 2 x m − 1 − 1 2 X n − 1 − 1 = An integer When X m − 1 X n − 1 = Integer
Now we know that { 2 x m − 2 2 X n − 2 , 2 x m − 1 2 X n − 1 , 2 x m 2 X n } = integer when { x m x n , x m − 1 x n − 1 } = integer
⟹ So { 2 x m − 2 2 X n − 2 , 2 x m − 1 2 X n − 1 , 2 x m 2 X n } = integer, when m n = integer
Let X be the smallest integer we can choose
When X=1, The 2 numbers will be = 2 and A = B
So X = 2
And n = m because A = B So the smallest possible 2 integers which not equal and when dividing them they gives an integer is (2,1)
So ( n , m ) = ( 2 , 1 )
And by putting X, n, m in their places
(A, B) = ( 2 X n , 2 X m ) = ( 2 2 2 , 2 2 1 ) = (16,4)
( A , B ) = ( 4 , 1 6 )