1 1 Linear 2 2 Quadratics

Algebra Level 2

The polynomial 3 x 5 + 17 x 4 + 3 x 3 + 3 x 2 + 17 x + 3 3x^5+17x^4+3x^3+3x^2+17x+3 can be factorized as the product of one linear and two quadratics polynomials, whose leading coefficients are positive. What is the sum of all of the coefficients in the three factors?

26 26 29 29 28 28 27 27

This section requires Javascript.
You are seeing this because something didn't load right. We suggest you, (a) try refreshing the page, (b) enabling javascript if it is disabled on your browser and, finally, (c) loading the non-javascript version of this page . We're sorry about the hassle.

4 solutions

3 x 5 + 17 x 4 + 3 x 3 + 3 x 2 + 17 x + 3 3x^5+17x^4+3x^3+3x^2+17x+3

= x 3 ( 3 x 2 + 17 x + 3 ) + 3 x 2 + 17 x + 3 =x^3\left(3x^2+17x+3\right)+3x^2+17x+3

= ( 3 x 2 + 17 x + 3 ) ( x 3 + 1 ) =\left(3x^2+17x+3\right)\left(x^3+1\right)

= ( 3 x 2 + 17 x + 3 ) ( x + 1 ) ( x 2 x + 1 ) =\left(3x^2+17x+3\right)\left(x+1\right)\left(x^2-x+1\right)

3 x 5 + 17 x 4 + 3 x 3 + 3 x 2 + 17 x + 3 = 3 x 5 + 3 x 2 + 17 x 4 + 17 x + 3 x 3 + 3 3 x 2 ( x 3 + 1 ) + 17 x ( x 3 + 1 ) + 3 ( x 3 + 1 ) = ( x 3 + 1 ) ( 3 x 2 + 17 x + 3 ) = ( x + 1 ) ( x 2 x + 1 ) ( 3 x 2 + 17 x + 3 ) \color{#3D99F6}{3x^5+17x^4+3x^3+3x^2+17x+3=3x^5+3x^2+17x^4+17x+3x^3+3\\ 3x^2(x^3+1)+17x(x^3+1)+3(x^3+1)=(x^3+1)(3x^2+17x+3)\\=(x+1)(x^2-x+1)(3x^2+17x+3)} Adding the coefficients we get 26 \boxed{26}

Dimas Jouhari
Mar 31, 2014

(x+1) (3x^2 + 17x +3) (x^2 - x + 1)

Aveek Dutta
Mar 22, 2014

(x+1)(x^2 -x +1)(3x^2 + 17x + 3)

0 pending reports

×

Problem Loading...

Note Loading...

Set Loading...