1 to the infinity?

Calculus Level 5

lim x 0 ( x ! ) 1 x = ? \large \lim _{ x\to 0}(x!)^{ \frac 1x }=?

Here's a relevant wiki .


The answer is 0.561.

This section requires Javascript.
You are seeing this because something didn't load right. We suggest you, (a) try refreshing the page, (b) enabling javascript if it is disabled on your browser and, finally, (c) loading the non-javascript version of this page . We're sorry about the hassle.

2 solutions

Naren Bhandari
Jun 15, 2019

lim x 0 x ! x = exp ( lim x 0 log e x ! x ) = exp ( lim x 0 log e Γ ( x + 1 ) x ) \lim_{x\to 0}\sqrt[x]{x!} =\exp\left(\lim_{x\to 0}\dfrac{\log_e x!}{x}\right)=\exp\left(\lim_{x\to 0} \dfrac{ \log_e\Gamma (x+1)}{x} \right) we apply L-hopital's rule to get exp ( lim x 0 Γ ( x + 1 ) ψ ( x + 1 ) Γ ( x + 1 ) ) = e ψ ( 1 ) = e γ 0.561 \exp\left(\lim_{x\to 0} \dfrac{\Gamma(x+1)\cdot \psi(x+1)}{\Gamma(x+1)}\right) =e^{\psi(1)}=e^{-\gamma} \approx 0.561

From the series representation of the Digamma function we have ψ ( s + 1 ) = γ + n = 1 ( 1 n 1 n + s ) \psi(s+1)=-\gamma +\sum_{n=1}^{\infty}\left(\dfrac{1}{n}-\dfrac{1}{n+s}\right) setting s = 0 s=0 we have ψ ( 1 ) = γ \psi(1)= -\gamma

Exactly the same approach!!!

Aaghaz Mahajan - 1 year, 12 months ago
Chew-Seong Cheong
Jun 16, 2019

L = lim x 0 ( x ! ) 1 x A 1 case, lim x a f ( x ) h ( x ) = e lim x a h ( x ) ( f ( x ) 1 ) = exp ( lim x 0 x ! 1 x ) A 0 / 0 case, L’H o ˆ pital’s rule applies = exp ( lim x 0 Γ ( x + 1 ) 1 x ) Γ ( ) denotes the gamma function = exp ( lim x 0 Γ ( x + 1 ) ψ ( x + 1 ) 1 ) Differentiate up and down w.r.t. x = exp ( 0 ! ψ ( 1 ) ) Digamma function ψ ( 1 ) = γ , where = e γ Euler-Mascheroni constant γ 0.5772 0.561 \begin{aligned} L & = \lim_{x \to 0} (x!)^{\frac 1x} & \small \color{#3D99F6} \text{A }1^\infty \text{ case, }\implies \lim_{x \to a} f(x)^{h(x)} = e^{\lim_{x \to a} h(x)(f(x)-1)} \\ & = \exp \left(\lim_{x \to 0} \frac {x! - 1}x \right) & \small \color{#3D99F6} \text{A } 0/0 \text{ case, L'Hôpital's rule applies} \\ & = \exp \left(\lim_{x \to 0} \frac {{\color{#3D99F6}\Gamma(x+1)} - 1}x \right) & \small \color{#3D99F6} \Gamma (\cdot) \text{ denotes the gamma function} \\ & = \exp \left(\lim_{x \to 0} \frac {\Gamma (x+1)\psi (x+1)}1 \right) & \small \color{#3D99F6} \text{Differentiate up and down w.r.t. }x \\ & = \exp (0! \psi (1)) & \small \color{#3D99F6} \text{Digamma function }\psi (1) = - \gamma \text{, where } \\ & = e^{-\gamma} & \small \color{#3D99F6} \text{Euler-Mascheroni constant }\gamma \approx 0.5772 \\ & \approx \boxed{0.561} \end{aligned}


References:

Very nice use of the identity in the first blue line. Thank you.

Pi Han Goh - 1 year, 11 months ago

0 pending reports

×

Problem Loading...

Note Loading...

Set Loading...