1 Trillion Followers Problem

Geometry Level 5

{ sin ( 2 x ) + sin ( 2 y ) = 1 / 3 cos ( 2 x ) + cos ( 2 y ) = 5 / 7 \large \begin{cases}{\sin(2x) + \sin(2y) = 1/3} \\ {\cos(2x) + \cos(2y) = 5/7}\end{cases}

Given x , y x,y satisfy the system of equations above, and denote the value of tan ( x ) + tan ( y ) \tan(x) + \tan(y) as a b \frac ab for coprime positive integers a , b a,b .

Find the value of a + b a+b .

Bonus : For the general system of equations below, state tan ( x ) + tan ( y ) \tan(x) + \tan(y) in terms of A A and B B .

{ sin ( 2 x ) + sin ( 2 y ) = A cos ( 2 x ) + cos ( 2 y ) = B \large \begin{cases}{\sin(2x) + \sin(2y) = A} \\ {\cos(2x) + \cos(2y) = B}\end{cases}


The answer is 373.

This section requires Javascript.
You are seeing this because something didn't load right. We suggest you, (a) try refreshing the page, (b) enabling javascript if it is disabled on your browser and, finally, (c) loading the non-javascript version of this page . We're sorry about the hassle.

4 solutions

汶良 林
May 19, 2015

Haha nice short cut, makes mine looks horrendous! +1

Pi Han Goh - 6 years ago

Best approach. This is the most correct way I think.

Lu Chee Ket - 5 years, 7 months ago

Log in to reply

Every solution posted here is correct. There is no "most correct way".

Pi Han Goh - 5 years, 7 months ago
Pi Han Goh
May 17, 2015

I'm going straight for the generalization.

tan x + tan y = sin x cos x + sin y cos y = sin x cos y + cos x sin y cos x cos y = 2 sin ( x + y ) 2 cos x cos y = 2 sin ( x + y ) cos ( x + y ) + cos ( x y ) \begin{aligned} \tan x + \tan y &=&\frac{\sin x }{\cos x} + \frac{ \sin y}{\cos y} \\ & = & \frac { \sin x \cos y + \cos x \sin y}{\cos x \cos y} \\ & = & \frac{2 \sin(x+y)}{2\cos x \cos y} \\ & = & \color{#3D99F6}{\frac{2 \sin(x+y)}{\cos(x+y) + \cos(x-y)} }\\ \end{aligned}

From the first equation:

sin ( 2 x ) + sin ( 2 y ) = A 2 sin ( x + y ) cos ( x y ) = A sin ( x + y ) = A 2 sec ( x y ) \begin{aligned} \sin(2x) + \sin(2y) & = & A \\ 2 \sin(x+ y) \cos(x-y) & = & A \\ \color{#20A900}{ \sin(x+ y)} & = & \color{#20A900}{\frac A2 \sec(x-y)} \\ \end{aligned}

From the second equation:

cos ( 2 x ) + cos ( 2 y ) = B 2 cos ( x + y ) cos ( x y ) = B cos ( x + y ) = B 2 sec ( x y ) \begin{aligned} \cos(2x) + \cos(2y) & = & B \\ 2 \cos(x+ y) \cos(x-y) & = & B \\ \color{#69047E}{ \cos(x+ y)} & = & \color{#69047E}{\frac B2 \sec(x-y)} \\ \end{aligned}

G R E E N 2 + P U R P L E 2 \color{#20A900}{GREEN} ^2 + \color{#69047E}{PURPLE} ^2 :

sin 2 ( x + y ) + cos 2 ( x + y ) = ( A 2 4 + B 2 4 ) sec 2 ( x y ) 1 = 1 4 ( A 2 + B 2 ) sec 2 ( x y ) cos ( x y ) = ± A 2 + B 2 2 \begin{aligned} \sin^2(x+ y) + \cos^2(x+y) &=& \left ( \frac {A^2}{4} + \frac {B^2}{4} \right) \sec^2 (x-y) \\ 1 &=& \frac 14 (A^2+B^2) \sec^2 (x-y) \\ \cos(x-y) &=& \pm \frac{\sqrt{A^2+B^2}}{2} \\ \end{aligned}

Solve for G R E E N \color{#20A900}{GREEN} and P U R P L E \color{#69047E}{PURPLE} gives

sin ( x + y ) = ± A A 2 + B 2 \sin(x+y) = \pm \frac A{\sqrt{A^2+B^2}} and cos ( x + y ) = ± B A 2 + B 2 \cos(x+y) = \pm \frac B{\sqrt{A^2+B^2}}

When taking their ratios as in B L U E \color{#3D99F6}{BLUE} , the signs "match up" and cancel out.

tan x + tan y = 2 A A 2 + B 2 B A 2 + B 2 + A 2 + B 2 2 = 4 A 2 B + A 2 + B 2 \large \tan x + \tan y = \frac{2 \cdot \frac A{\sqrt{A^2+B^2}} } { \frac B{\sqrt{A^2+B^2}} + \frac{\sqrt{A^2+B^2}}2 } = \frac{4A}{2B + A^2+B^2} \\

In this case, A = 1 3 , B = 5 7 tan x + tan y = 147 226 A = \frac 13, B = \frac57 \Rightarrow \tan x + \tan y = \frac{147}{226} .

Solved it twice, first using @Abhishek Sharma 's method and then same as yours! Nice problem.

A Former Brilliant Member - 5 years, 5 months ago

1 Trillion Followers Problem \huge \text{1 Trillion Followers Problem}

You are quite ambitious . Well , all the best for achieving that target . I know that this is the preview question by you , so I'll be waiting for the real deal .

\huge \text{\(^o^)/}

Otto Bretscher
May 17, 2015

We can interpret the given equations as the addition of unit vectors, ( cos 2 x , sin 2 x ) + ( cos 2 y , sin 2 y ) = ( 5 7 , 1 3 ) (\cos{2x},\sin{2x})+(\cos{2y},\sin{2y})=\left(\frac{5}{7},\frac{1}{3}\right) . See the attached figure, where r = A 2 + B 2 r=\sqrt{A^2+B^2}

We can find the points ( cos 2 x , sin 2 x ) (\cos{2x},\sin{2x}) and ( cos 2 y , sin 2 y ) (\cos{2y},\sin{2y}) as the two points of intersection of the unit circles centered at the origin and at the point ( A , B ) (A,B) . These points turn out to be 1 2 ( A , B ) ± 1 r 2 / 4 r ( B , A ) \frac{1}{2}(A,B)\pm\frac{\sqrt{1-r^2/4}}{r}(B,-A) ; this result should make good sense in terms of our figure. Now tan x + tan y = 1 cos 2 x sin 2 x + 1 cos 2 y sin 2 y \tan{x}+\tan{y}=\frac{1-\cos{2x}}{\sin{2x}}+\frac{1-\cos{2y}}{\sin{2y}} ...

Here is an ALTERNATIVE SOLUTION, more in line with the two others, but from a vectorial point of view (or just think in terms of polar coordinates!), supported by the attached figure. Let r = A 2 + B 2 r=\sqrt{A^2+B^2} , and note that the polar angle of the point ( A , B ) (A,B) is x + y x+y (we may have to change the angle x x by π \pi , which will not affect the problem). Now cos ( x + y ) = B r , sin ( x + y ) = A r , cos ( y x ) = r 2 , \cos(x+y)=\frac{B}{r},\quad\sin(x+y)=\frac{A}{r},\quad\cos(y-x)=\frac{r}{2}, tan x + tan y = 2 sin ( x + y ) cos ( x + y ) + cos ( y x ) = 2 A / r B / r + r / 2 \tan{x}+\tan{y}=\frac{2\sin(x+y)}{\cos(x+y)+\cos(y-x)}=\frac{2A/r}{B/r+r/2} = 4 A 2 B + r 2 = 4 A 2 B + A 2 + B 2 = 147 226 =\frac{4A}{2B+r^2}=\frac{4A}{2B+A^2+B^2}=\boxed{\frac{147}{226}}

Wow love your alternative solution! Typo on the fraction though. +1

I couldn't really completely grasp what you're trying to say for the first part, will need time to digest it.

Pi Han Goh - 6 years ago

Log in to reply

Conceptually, my first solution is very simple... but the devil is in the detail, the computation. The points ( cos 2 x , sin 2 x ) (\cos{2x},\sin{2x}) and ( cos 2 y , sin 2 y ) (\cos{2y},\sin{2y}) have a distance of 1 from the origin as well as from the point ( A , B ) (A,B) , so, they are the points of intersections of those two circles I defined. Problem is, the coordinates come out messy, involving 102065 \sqrt{102065} .

I didn't catch the typo... sorry...it's late.

Otto Bretscher - 6 years ago
Abhishek Sharma
May 17, 2015

sin 2 x + sin 2 y = A \sin {2x} + \sin{2y}=A 2 sin ( x + y ) sin ( x y ) = A 1 2\sin{\left( x+y \right) }\sin{\left( x-y \right)=A \quad \dots 1} cos 2 x + cos 2 y = B \cos {2x} + \cos{2y}=B 2 cos ( x + y ) cos ( x y ) = B 2 2\cos{\left( x+y \right) }\cos{\left( x-y \right) }=B \quad \dots 2 Dividing equation 1 1 by equation 2 2 . tan ( x + y ) = A B 3 \tan{\left( x+y \right)=\frac{A}{B}} \dots 3 tan ( x + y ) = tan x + tan y 1 tan x tan y \tan{\left( x+y \right)}=\frac{\tan{x}+\tan{y}}{1-\tan{x} \tan{y}} tan x + tan y = tan ( x + y ) ( 1 tan x tan y ) 4 \tan{x}+\tan{y}=\tan{\left( x+y \right)}\left(1-\tan{x} \tan{y}\right) \quad \dots 4 tan x tan y = sin x sin y cos x cos y \tan{x} \tan{y}=\frac{\sin{x}\sin{y}}{\cos{x}\cos{y}} = 2 sin x sin y 2 cos x cos y =\frac{2\sin{x}\sin{y}}{2\cos{x}\cos{y}} = cos ( x y ) cos ( x + y ) cos ( x + y ) cos ( x y ) 5 =\frac{\cos{\left( x-y \right) }-\cos{\left( x+y \right) }}{\cos{\left( x+y \right) }-\cos{\left( x-y \right) }} \quad \dots 5 Squaring and adding 1 1 and 2 2 , 4 cos 2 ( x y ) = A 2 + B 2 4\cos ^{ 2 }{ \left( x-y \right) ={ A }^{ 2 }+{ B }^{ 2 } } cos ( x y ) = A 2 + B 2 2 6 \cos { \left( x-y \right) } =\quad \frac { \sqrt { { A }^{ 2 }+{ B }^{ 2 } } }{ 2 } \quad \dots 6 Using equation 2 2 we have, cos ( x + y ) = B A 2 + B 2 7 \cos { \left( x+y \right) } =\quad \frac { B }{ \sqrt { { A }^{ 2 }+{ B }^{ 2 } } } \quad \dots 7 Using equation 6 6 and 7 7 in equation 5 5 we get, tan x tan y = A 2 + B 2 2 B A 2 + B 2 + 2 B 8 \tan { x } \tan { y } =\frac { { A }^{ 2 }+{ B }^{ 2 }-2B }{ { A }^{ 2 }+{ B }^{ 2 }+2B } \quad \dots 8 Using equation 3 3 and 8 8 in 4 4 , tan x + tan y = 4 A A 2 + B 2 + 2 B \tan{x}+\tan{y}=\frac { 4A }{ { A }^{ 2 }+{ B }^{ 2 }+2B }

147 226 \large \boxed{\frac{147}{226}}

Wow slightly different from mine! +1

Pi Han Goh - 6 years ago

exactly what i did(+1).

Aareyan Manzoor - 5 years, 5 months ago

0 pending reports

×

Problem Loading...

Note Loading...

Set Loading...