1 word: Try

Algebra Level 5

1 x 2 + 5 x + a 2 x 2 3 x + 2 < 7 \large -1\leq\frac{x^2+5x+a}{2x^2-3x+2}<7 How many integers a a satisfy the inequality above?


The answer is 2.

This section requires Javascript.
You are seeing this because something didn't load right. We suggest you, (a) try refreshing the page, (b) enabling javascript if it is disabled on your browser and, finally, (c) loading the non-javascript version of this page . We're sorry about the hassle.

1 solution

Case 1 : Find the value of a a that satisfy x 2 + 5 x + a 2 x 2 3 x + 2 < 7 \frac{x^2+5x+a}{2x^2-3x+2}<7

x 2 + 5 x + a 2 x 2 3 x + 2 < 7 x 2 + 5 x + a 2 x 2 3 x + 2 7 < 0 13 x 2 + 26 x + ( a 14 ) 2 x 2 3 x + 2 < 0 \frac{x^2+5x+a}{2x^2-3x+2}<7 \\ \frac{x^2+5x+a}{2x^2-3x+2}-7<0 \\ \frac{-13x^2+26x+(a-14)}{2x^2-3x+2}<0

Given that, if a x 2 + b x + c ax^2+bx+c has { D < 0 and a < 0 , a x 2 + b x + c always negative D < 0 and a > 0 , a x 2 + b x + c always positive \begin{cases} D \lt 0 & \text{and} & a \lt 0, & ax^2+bx+c & \text{always negative} \\ D \lt 0 & \text{and} & a \gt 0, & ax^2+bx+c & \text{always positive} \end{cases}

Because the denominator has D < 0 D<0 and a > 0 a>0 , 2 x 2 3 x + 2 2x^2-3x+2 is always positive. So, value of 13 x 2 + 26 x + ( a 14 ) -13x^2+26x+(a-14) must be negative ( D < 0 D<0 ).

D < 0 2 6 2 4 ( 13 ) ( a 14 ) < 0 676 + 52 a 728 < 0 a < 1 D<0 \\ 26^2-4(-13)(a-14)<0 \\ 676+52a-728<0 \\ a<1

Case 2 : Find the value of a a that satisfy x 2 + 5 x + a 2 x 2 3 x + 2 1 \frac{x^2+5x+a}{2x^2-3x+2} \geq -1

x 2 + 5 x + a 2 x 2 3 x + 2 1 x 2 + 5 x + a 2 x 2 3 x + 2 + 1 0 3 x 2 + 2 x + ( a + 2 ) 2 x 2 3 x + 2 0 \frac{x^2+5x+a}{2x^2-3x+2} \geq -1 \\ \frac{x^2+5x+a}{2x^2-3x+2}+1 \geq 0 \\ \frac{3x^2+2x+(a+2)}{2x^2-3x+2} \geq 0

Because the denominator value is always positive, 3 x 2 + 2 x + ( a + 2 ) 3x^2+2x+(a+2) is not negative ( 3 x 2 + 2 x + ( a + 2 ) 0 3x^2+2x+(a+2) \geq 0 , D 0 D \leq 0 ).

D 0 4 4 ( 3 ) ( a + 2 ) 0 4 12 a 24 0 a 5 3 D \leq 0 \\ 4-4(3)(a+2) \leq 0 \\ 4-12a-24 \leq 0 \\ a \geq -\frac{5}{3}

We get the range is 5 3 a < 1 -\frac{5}{3} \leq a < 1 . And integer of a a that satisfy the inequalities is 1 -1 and 0 0 = 2 = \boxed{2} integers.

If D < 0 D<0 and a < 0 a<0 how a x 2 + b x + c ax^2+bx+c is always negative ?? And also the second equation after that ???

Chirayu Bhardwaj - 5 years, 1 month ago

Log in to reply

Is this as such ,
D < 0 b 2 < 4 a c b 2 < 4 c D<0 \implies b^2<4ac \implies b^2<-4c as a a is negative .
But square of any number can't be negative , so c c has to be negative.
But what about b b , it can be negative or positive ?? Please explain. Thank you


Chirayu Bhardwaj - 5 years, 1 month ago

Log in to reply

Sorry for ambiguity. If a < 0 a < 0 , most of the range is negative ( < y maximum value -\infty < y \leq \text{maximum value} ), or the turning point are the maximum value of the function. While for a > 0 a > 0 , most of the range is positive ( minimum value y < \text{minimum value} \leq y < \infty ), or the turning point is the minimum value of the function. Because a < 0 a < 0 and D < 0 D < 0 , the function not intercept the x x -axis. So, the function is below the x x -axis, or the function always negative.

0 pending reports

×

Problem Loading...

Note Loading...

Set Loading...