Let x , y be real numbers satisfying x + y = 3 . To 2 decimal places, what is the maximum value of
x 4 y + x 3 y + x 2 y + x y + x y 2 + x y 3 + x y 4 ?
Other problems: Check your Calibre
This section requires Javascript.
You are seeing this because something didn't load right. We suggest you, (a) try
refreshing the page, (b) enabling javascript if it is disabled on your browser and,
finally, (c)
loading the
non-javascript version of this page
. We're sorry about the hassle.
( link try to do this problem please
I liked the way you should how to get max. and use colors. +1)
By taking xy=t and the taking xy common from the expression.
we get expression Value as : t(40-11t) . Since we know that x+y=3 .
So maximum value of xy=2.25.
But you may get doubt that both need not be positive but they have to be positive because if one of x,y is negative then other one will be positive making their product negative by which the expression will be negative so both should be positive so I applied A.M.≥G.M..
For the expression t(40-11t) to be maximum t=40/22.so t<2 .
Which is possible so therefore maximum is at t=40/22.
So ,(40/22)(40-11(40/22))=800/22=36.36.. so answer is 36.36 .😎
For this expression there is no minimum value only maximum value exists .. since x,y are real
Is it nice
Log in to reply
yes, upvoted :) keep writing solution :) i messes up in the differentiation :(
Nice solution
f ( X , Y ) = X 4 Y + X 3 Y + X 2 Y + X Y + X Y 2 + X Y 3 + X Y 4 = X Y ( ( X 3 + Y 3 ) + ( X 2 + Y 2 ) + ( X + Y ) + 1 ) = X Y { { X + Y } ∗ { ( X + Y ) 2 − 3 X Y } + ( X + Y ) 2 − 2 X Y + X + Y + 1 } . L e t A = X Y . ⟹ f ( A ) = A { ( 3 ) ( 9 − 3 A ) + 9 − 2 A + 4 } = A ( 2 7 − 9 A + 9 − 2 A + 4 ) = 4 0 A − 1 1 A 2 . ∴ f ′ ( A ) = 4 0 − 2 2 A = 0 , ⟹ X Y = 3 X − X 2 = A = 2 0 / 1 1 . { O R v e r t e x o f p a r a b o l a 4 0 A − 1 1 A 2 , i s 2 ∗ 1 1 − 4 0 = 2 0 / 1 1 , a s a b o v e . } ∴ f ( A ) m a x = f ( 2 0 / 1 1 ) = 4 0 0 / 1 1 = 3 6 . 3 6 . . . .
Problem Loading...
Note Loading...
Set Loading...
z = x 4 y + x 3 y + x 2 y + x y + x y 2 + x y 3 + x y 4 = x y ( x 3 + x 2 + x + 1 + y + y 2 + y 3 ) = x y ( x 3 + y 3 + x 2 + y 2 + x + y + 1 ) = x y ( 2 7 − 9 x y + 9 − 2 x y + 3 + 1 ) = x y ( 4 0 − 1 1 x y ) = − 1 1 ( ( x y ) 2 − 1 1 4 0 x y ) = 1 1 2 0 2 − 1 1 ( x y − 1 1 2 0 ) 2 See notes.
Note that ( x y − 1 1 2 0 ) 2 ≥ 0 , therefore, z is maximum when ( x y − 1 1 2 0 ) 2 = 0 and z m a x = M = 1 1 4 0 0 ⟹ ⌊ M ⌋ = ⌊ 3 6 . 3 ˙ 6 ˙ ⌋ = 3 6
Notes:
x 2 + y 2 x 3 + y 3 = ( x + y ) 2 − 2 x y = 9 − 2 x y = ( x + y ) ( x 2 + y 2 − x y ) = 2 7 − 9 x y