Long maximum

Algebra Level 5

Let x , y x, y be real numbers satisfying x + y = 3 x+y = 3 . To 2 decimal places, what is the maximum value of

x 4 y + x 3 y + x 2 y + x y + x y 2 + x y 3 + x y 4 ? x^4 y + x^3 y + x^2 y + x y + x y^2 + x y^3 + x y^4 ?


Other problems: Check your Calibre


The answer is 36.36.

This section requires Javascript.
You are seeing this because something didn't load right. We suggest you, (a) try refreshing the page, (b) enabling javascript if it is disabled on your browser and, finally, (c) loading the non-javascript version of this page . We're sorry about the hassle.

3 solutions

z = x 4 y + x 3 y + x 2 y + x y + x y 2 + x y 3 + x y 4 = x y ( x 3 + x 2 + x + 1 + y + y 2 + y 3 ) = x y ( x 3 + y 3 + x 2 + y 2 + x + y + 1 ) See notes. = x y ( 27 9 x y + 9 2 x y + 3 + 1 ) = x y ( 40 11 x y ) = 11 ( ( x y ) 2 40 11 x y ) = 2 0 2 11 11 ( x y 20 11 ) 2 \begin{aligned} z & = x^4y + x^3y+x^2y+xy+xy^2+xy^3+xy^4 \\ & = xy \left(x^3+x^2+x+1+y+y^2+y^3 \right) \\ & = xy \left({\color{#3D99F6} x^3 + y^3}+{\color{#D61F06}x^2+y^2}+x+y+1 \right) & \small \color{#3D99F6} \text{See notes.} \\ & = xy \left({\color{#3D99F6}27-9xy}+{\color{#D61F06}9-2xy}+3+1 \right) \\ & = xy \left(40-11xy \right) \\ & = - 11 \left((xy)^2 - \frac {40}{11}xy \right) \\ & = \frac {20^2}{11} - 11 \color{#3D99F6} \left(xy - \frac {20}{11} \right)^2 \end{aligned}

Note that ( x y 20 11 ) 2 0 \color{#3D99F6} \left(xy - \frac {20}{11} \right)^2 \ge 0 , therefore, z z is maximum when ( x y 20 11 ) 2 = 0 \color{#3D99F6} \left(xy - \frac {20}{11} \right)^2 = 0 and z m a x = M = 400 11 z_{max} = M = \dfrac {400}{11} M = 36. 3 ˙ 6 ˙ = 36 \implies \lfloor M \rfloor = \lfloor 36.\dot 3 \dot 6 \rfloor = \boxed{36}


Notes:

x 2 + y 2 = ( x + y ) 2 2 x y = 9 2 x y x 3 + y 3 = ( x + y ) ( x 2 + y 2 x y ) = 27 9 x y \small \begin{aligned} x^2+y^2 & = (x+y)^2 - 2xy = 9 - 2xy \\ x^3+y^3 & = (x+y)(x^2+y^2 - xy) = 27 - 9xy \end{aligned}

( link try to do this problem please

Sudhamsh Suraj - 4 years, 3 months ago

I liked the way you should how to get max. and use colors. +1)

Niranjan Khanderia - 4 years, 2 months ago
Sudhamsh Suraj
Mar 5, 2017

By taking xy=t and the taking xy common from the expression.

we get expression Value as : t(40-11t) . Since we know that x+y=3 .

So maximum value of xy=2.25.

But you may get doubt that both need not be positive but they have to be positive because if one of x,y is negative then other one will be positive making their product negative by which the expression will be negative so both should be positive so I applied A.M.≥G.M..

For the expression t(40-11t) to be maximum t=40/22.so t<2 .

Which is possible so therefore maximum is at t=40/22.

So ,(40/22)(40-11(40/22))=800/22=36.36.. so answer is 36.36 .😎

For this expression there is no minimum value only maximum value exists .. since x,y are real

Sudhamsh Suraj - 4 years, 3 months ago

Is it nice

Sudhamsh Suraj - 4 years, 3 months ago

Log in to reply

yes, upvoted :) keep writing solution :) i messes up in the differentiation :(

A Former Brilliant Member - 4 years, 3 months ago

Nice solution

Sush K - 4 years, 3 months ago

f ( X , Y ) = X 4 Y + X 3 Y + X 2 Y + X Y + X Y 2 + X Y 3 + X Y 4 = X Y ( ( X 3 + Y 3 ) + ( X 2 + Y 2 ) + ( X + Y ) + 1 ) = X Y { { X + Y } { ( X + Y ) 2 3 X Y } + ( X + Y ) 2 2 X Y + X + Y + 1 } . L e t A = X Y . f ( A ) = A { ( 3 ) ( 9 3 A ) + 9 2 A + 4 } = A ( 27 9 A + 9 2 A + 4 ) = 40 A 11 A 2 . f ( A ) = 40 22 A = 0 , X Y = 3 X X 2 = A = 20 / 11. { O R v e r t e x o f p a r a b o l a 40 A 11 A 2 , i s 40 2 11 = 20 / 11 , a s a b o v e . } f ( A ) m a x = f ( 20 / 11 ) = 400 / 11 = 36.36.... f(X,Y)=X^4Y+X^3Y+X^2Y+XY+XY^2+XY^3+XY^4\\ =XY \bigg(\qquad (X^3+Y^3)\qquad ~~~~~\qquad+\qquad~~~~~\qquad (X^2+Y^2)\qquad~~~~~+\qquad~~~~~(X+Y)~~+1 \bigg)\\ =XY \bigg \{ \quad \{X+Y\} *\{(X+Y)^2-3XY\}\quad~~~~~+\quad~~~~~(X+Y)^2-2XY\qquad+\qquad X+Y\quad~~+1 \bigg \}.\\ Let~A=XY. \\ \implies~f(A)=A \Big\{\qquad(3)(9-3A)\qquad~\qquad~+\qquad~\qquad~9-2A\quad~\quad~\qquad + \qquad~\qquad4 \Big \}\\ =A( 27 - 9A + 9 - 2A + 4)=\quad40A\quad-\quad11A^2.\\ \therefore~f'(A)=40-22A=0,~~\implies~XY=3X -X^2=A=20/11.\\ \qquad~\qquad \{ OR~vertex~of~parabola~ ~\quad40A-11A^2,~~~is~~\dfrac{-40}{2*11}=20/11,~as~above.\} \\ \therefore~~f(A)_{max}=f(20/11)=400/11=\Huge \color{#D61F06}{36.36....}\\

0 pending reports

×

Problem Loading...

Note Loading...

Set Loading...