100 digit number % 7

1
4 408 129 236 673 212 266 243 285 731 779 551 239 128 334 567 128 124 566 679 122 269 553 285 731 776 241 233 218 339 237 124 405 952

Find the remainder when the 100-digit integer above is divided by 7.

4 2 0 6 5 3 1

This section requires Javascript.
You are seeing this because something didn't load right. We suggest you, (a) try refreshing the page, (b) enabling javascript if it is disabled on your browser and, finally, (c) loading the non-javascript version of this page . We're sorry about the hassle.

1 solution

Yoga Nugraha
Dec 22, 2015

Follow this equation : 1 7 ( a 7 a 6 a 5 a 4 a 3 a 2 a 1 a 0 ) \frac{1}{7}(\overline{\ldots a_7 a_6 a_5 a_4 a_3 a_2 a_1 a_0}) = 1 7 ( 1 0 0 a 0 + 1 0 1 a 1 + 1 0 2 a 2 + 1 0 3 a 3 + 1 0 4 a 4 + 1 0 5 a 5 + 1 0 6 a 6 + 1 0 7 a 7 + ) = \frac{1}{7}(10^0 a_0 + 10^1 a_1 + 10^2 a_2 + 10^3 a_3 + 10^4 a_4 + 10^5 a_5 + 10^6 a_6 + 10^7 a_7 + \ldots) = 1 7 a 0 + ( 1 + 3 7 ) a 1 + ( 14 + 2 7 ) a 2 + ( 142 + 6 7 ) a 3 + ( 1428 + 4 7 ) a 4 + ( 14285 + 5 7 ) a 5 + ( 142857 + 1 7 ) a 6 + ( 1428571 + 3 7 ) a 7 + = \frac{1}{7}a_0 + (1+\frac{3}{7})a_1 + (14+\frac{2}{7})a_2 + (142 + \frac{6}{7})a_3 + (1428 + \frac{4}{7})a_4 + (14285 + \frac{5}{7})a_5 + (142857 + \frac{1}{7})a_6 + (1428571 + \frac{3}{7})a_7 + \ldots = 1 7 ( a 0 + a 6 + ) + 3 7 ( a 1 + a 7 + ) + 2 7 ( a 2 + a 8 + ) + 6 7 ( a 3 + a 9 + ) + 4 7 ( a 4 + a 1 0 + ) + 5 7 ( a 5 + a 1 1 + ) = \frac{1}{7}(a_0 +a_6 + \ldots) + \frac{3}{7}(a_1 + a_7 + \ldots) + \frac{2}{7}(a_2 + a_8 + \ldots) + \frac{6}{7}(a_3 + a_9 + \ldots) + \frac{4}{7}(a_4 +a_10 + \ldots) + \frac{5}{7}(a_5 + a_11 + \ldots) That's how the digit define the remainder. From that equation, we know that if [a 0 + a 6 + \ldots = a 3 + a 9 + \ldots\ = n] It will make those (0+6k) and (3+6k) number cannot control remainder. I don't know how to explain, but here i find the remainder : 739,289 mod 7 --> 5 0 0 , 0 5 0 --> 5(5/7) + 5(3/7) --> 5(8/7) --> 40/7 -- >5 + 5/7 ---another example--- 295,381,629,618,492,628 mod 7 --> 12 20 16 , 15 11 17 --> 0 9 0 , 3 0 1 --> 9(4/7) + 3(2/7) + 1(1/7) --> 36/7 + 6/7 + 1/7 --> 43/7 --> 6 + 1/7

That is manual way. You also can solve with calculator. If it asked 391,294,163,813,713,017,371,824,817 mod 7 Then in calculator, calculate 391,294,163 mod 7, then it will result 1. Then add the result in front of next number, calculate 1,813,713,017 mod 7, then it will result 4. Then add the result in front of next number, calculate 4,371,824,817 mod 7, then it will result 3, the remainder of 27 digit above divide 7.

That's what i can say. About the problem, there is some tricky number which make the problem easier as 4 digit ;)

Man, you are g o o d good

Ashish Menon - 5 years, 4 months ago

0 pending reports

×

Problem Loading...

Note Loading...

Set Loading...