100 Followers Problem

Geometry Level 4

k = 1 35 sin ( 5 k ) = tan ( m n ) \large \sum_{k=1}^{35} \sin \left(5k^\circ \right) = \tan \left(\frac {m}{n}\right)^\circ .

The equation above holds true for coprime positive integers m m and n n , where m n < 90 \dfrac {m}{n} < 90 . Find m + n m+n .

173 175 179 177

This section requires Javascript.
You are seeing this because something didn't load right. We suggest you, (a) try refreshing the page, (b) enabling javascript if it is disabled on your browser and, finally, (c) loading the non-javascript version of this page . We're sorry about the hassle.

2 solutions

Chew-Seong Cheong
May 16, 2017

S = k = 1 35 sin ( 5 k ) By Euler’s formula: e x i = cos x + i sin x = k = 1 35 [ e 5 k i ] where ( z ) is the imaginary part of z . = [ k = 1 35 e 5 k i ] Summation of geometric progression = [ e 5 i ( 1 e 17 5 i 1 e 5 i ) ] = [ e 5 i e 18 0 i 1 e 5 i ] = [ e 5 i + 1 1 e 5 i ] = [ 1 + cos 5 + i sin 5 1 cos 5 i sin 5 ] Multiply up and down with 1 cos 5 + i sin 5 = [ 2 i sin 5 2 2 cos 5 ] = sin 5 1 cos 5 = 2 sin 2. 5 cos 2. 5 1 1 + 2 sin 2 2. 5 = cot 5 2 = tan 17 5 2 \begin{aligned} S & = \sum_{k=1}^{35} \sin \left(5k^\circ \right) & \small \color{#3D99F6} \text{By Euler's formula: }e^{xi} = \cos x + i \sin x \\ & = \sum_{k=1}^{35} \Im \left[e^{5k^\circ i}\right] & \small \color{#3D99F6} \text{where } \Im(z) \text{ is the imaginary part of }z. \\ & = \Im \left[\sum_{k=1}^{35} e^{5k^\circ i}\right] & \small \color{#3D99F6} \text{Summation of geometric progression} \\ & = \Im \left[e^{5^\circ i} \left( \frac {1-e^{175^\circ i}}{1-e^{5^\circ i}} \right) \right] \\ & = \Im \left[ \frac {e^{5^\circ i}-e^{180^\circ i}}{1-e^{5^\circ i}} \right] \\ & = \Im \left[ \frac {e^{5^\circ i}+1}{1-e^{5^\circ i}} \right] \\ & = \Im \left[ \frac {1+\cos 5^\circ + i \sin 5^\circ}{1-\cos 5^\circ - i \sin 5^\circ} \right] & \small \color{#3D99F6} \text{Multiply up and down with }1-\cos 5^\circ + i \sin 5^\circ \\ & = \Im \left[ \frac {2i \sin 5^\circ}{2-2\cos 5^\circ} \right] \\ & = \frac {\sin 5^\circ}{1-\cos 5^\circ} \\ & = \frac {2\sin 2.5^\circ \cos 2.5^\circ}{1-1 +2\sin^2 2.5^\circ} \\ & = \cot \frac {5^\circ}2 = \tan \frac {175^\circ}2 \end{aligned}

a + b = 175 + 2 = 177 \implies a+b = 175+2 = \boxed{177}


References:

Nice solution, did the same, only different by one step, perhaps simpler. Instead of using the half-angle tangent substitution, maybe it is easier to put sin ( 5 o ) = 2 sin ( 2. 5 o ) cos ( 2. 5 o ) \sin(5^o) = 2 \sin(2.5^o) \cos(2.5^o) and cos ( 5 o ) = 1 2 sin 2 ( 2. 5 o ) \cos(5^o) = 1 - 2 \sin^2(2.5^o)

Guilherme Niedu - 4 years ago

Log in to reply

Thanks, I will use this to shorten the solution.

Chew-Seong Cheong - 4 years ago

Log in to reply

Thank you for incorporating this in the solution.

Guilherme Niedu - 4 years ago

Also, when you multply below and above by the conjugate, the result is the imaginary part of 2 i sin ( 5 o ) 2 2 cos ( 5 o ) \frac{2i \sin(5^o)}{2 - 2 \cos(5^o)} . There is no 1 cos 2 ( 5 o ) 1 - \cos^2(5^o) above.

Guilherme Niedu - 4 years ago

Log in to reply

Thanks a lot.

Chew-Seong Cheong - 4 years ago

Log in to reply

You're welcome, sir.

Guilherme Niedu - 4 years ago

Done the same. Although i remember direct result of summation of sine and cosine when Angles r in AP . you derived it sir Upvoted!

Prakhar Bindal - 4 years ago
Ahmad Saad
May 16, 2017

0 pending reports

×

Problem Loading...

Note Loading...

Set Loading...