100 Followers Problem (Calculus)!

Calculus Level 5

lim n π / 4 π / 3 n ln [ ( 1 + sin θ sec 2 θ n ) cos θ ( 1 + cos θ n ) cot θ ( 1 + cot θ n ) sin θ sec 2 θ ] d θ \large{\lim_{n \to \infty} \int_{\pi/4}^{\pi/3} n \ln{\left[\left(1+\frac{\sin\theta\sec^2\theta}{n}\right)^{\cos\theta} \left(1+\frac{\cos\theta}{n}\right)^{\cot\theta} \left(1+\frac{\cot\theta}{n}\right)^{\sin\theta\sec^2\theta}\right]}d\theta}

Suppose the value of the above limit can be expressed in the form: ln ( ( A + 1 ) B C ) + ( 1 D 1 E ) \ln\left({\frac{(\sqrt{A} + 1)^B}{\sqrt{C}}}\right) +\left(\frac{1}{D} - \frac{1}{\sqrt{E}}\right)

where A , B , C , D , E A,B,C,D,E are positive integers, and A , C , E A,C,E are square free. Then what is the value of A + B + C + D + E A+B+C+D+E ?


The answer is 15.

This section requires Javascript.
You are seeing this because something didn't load right. We suggest you, (a) try refreshing the page, (b) enabling javascript if it is disabled on your browser and, finally, (c) loading the non-javascript version of this page . We're sorry about the hassle.

1 solution

Satyajit Mohanty
Jul 19, 2015

First of all, understand what the above theorem says. It's very simple to understand, for those who don't know it, and I expect a lot of people to know it.

Denote P = ( 1 + sin θ sec 2 θ n ) cos θ , Q = ( 1 + cos θ n ) cot θ , R = ( 1 + cot θ n ) sin θ sec 2 θ P = \left(1+\frac{\sin\theta\sec^2\theta}{n}\right)^{\cos\theta} , Q=\left(1+\frac{\cos\theta}{n}\right)^{\cot\theta}, R=\left(1+\frac{\cot\theta}{n}\right)^{\sin\theta\sec^2\theta}

Thus we have the integral as lim n π / 4 π / 3 n ln [ P Q R ] d θ \lim_{n \to \infty} \int_{\pi/4}^{\pi/3} n\ln{[PQR]}\ d\theta

= lim n π / 4 π / 3 n ln ( P ) d θ + lim n π / 4 π / 3 n ln ( Q ) d θ + lim n π / 4 π / 3 n ln ( R ) d θ = \displaystyle \lim_{n \to \infty} \int_{\pi/4}^{\pi/3} n\ln{(P)}\ d\theta +\displaystyle \lim_{n \to \infty} \int_{\pi/4}^{\pi/3} n\ln{(Q)}\ d\theta+ \displaystyle \lim_{n \to \infty} \int_{\pi/4}^{\pi/3} n\ln{(R)}\ d\theta

= π / 4 π / 3 lim n n ln ( P ) d θ + π / 4 π / 3 lim n n ln ( Q ) d θ + π / 4 π / 3 lim n n ln ( R ) d θ = \displaystyle \int_{\pi/4}^{\pi/3} \displaystyle \lim_{n \to \infty} n\ln{(P)}\ d\theta +\int_{\pi/4}^{\pi/3} \displaystyle \lim_{n \to \infty} n\ln{(Q)} \ d\theta+ \int_{\pi/4}^{\pi/3} \displaystyle \lim_{n \to \infty} n\ln{(R)}\ d\theta


Now:

π / 4 π / 3 lim n n ln ( P ) d θ = π / 4 π / 3 lim n ln ( 1 + sec θ tan θ n ) sec θ n d θ \displaystyle \int_{\pi/4}^{\pi/3} \displaystyle \lim_{n \to \infty} n\ln{(P)}\ d\theta = \displaystyle \int_{\pi/4}^{\pi/3} \displaystyle \lim_{n \to \infty} \frac{\ln{(1+\frac{\sec\theta \tan\theta}{n}})}{\frac{\sec\theta}{n}}\ d\theta

= π / 4 π / 3 lim n tan θ ln ( 1 + sec θ tan θ n ) sec θ tan θ n d θ = π / 4 π / 3 tan θ d θ =\displaystyle \int_{\pi/4}^{\pi/3} \displaystyle \lim_{n \to \infty} \frac{\tan\theta\ln{(1+\frac{\sec\theta \tan\theta}{n}})}{\frac{\sec\theta\tan\theta}{n}}\ d\theta = \displaystyle \int_{\pi/4}^{\pi/3} \tan\theta \ d\theta


Similarly:

π / 4 π / 3 lim n n ln ( Q ) d θ \displaystyle \int_{\pi/4}^{\pi/3} \displaystyle \lim_{n \to \infty} n\ln{(Q)}\ d\theta

= π / 4 π / 3 lim n cot θ cos θ ln ( 1 + cos θ n ) cos θ n d θ = π / 4 π / 3 cot θ cos θ d θ = \displaystyle \int_{\pi/4}^{\pi/3} \displaystyle \lim_{n \to \infty} \cot\theta\cos\theta\frac{\ln{(1+\frac{\cos\theta}{n}})}{\frac{\cos\theta}{n}}\ d\theta = \displaystyle \int_{\pi/4}^{\pi/3} \cot\theta\cos\theta \ d\theta


Similarly: π / 4 π / 3 lim n n ln ( R ) d θ \displaystyle \int_{\pi/4}^{\pi/3} \displaystyle \lim_{n \to \infty} n\ln{(R)}\ d\theta

= π / 4 π / 3 lim n sec θ ln ( 1 + cot θ n ) cot θ n d θ = π / 4 π / 3 sec θ d θ = \displaystyle \int_{\pi/4}^{\pi/3}\displaystyle \lim_{n \to \infty} \sec\theta\frac{\ln{(1+\frac{\cot\theta}{n}})}{\frac{\cot\theta}{n}}\ d\theta = \displaystyle \int_{\pi/4}^{\pi/3} \sec\theta \ d\theta


Therefore we obtain:

lim n π / 4 π / 3 n ln ( P ) d θ + lim n π / 4 π / 3 n ln ( Q ) d θ + lim n π / 4 π / 3 n ln ( R ) d θ \displaystyle \lim_{n \to \infty} \int_{\pi/4}^{\pi/3} n\ln{(P)}\ d\theta +\displaystyle \lim_{n \to \infty} \int_{\pi/4}^{\pi/3} n\ln{(Q)}\ d\theta+ \displaystyle \lim_{n \to \infty} \int_{\pi/4}^{\pi/3} n\ln{(R)}\ d\theta


= π / 4 π / 3 ( tan θ + cot θ cos θ + sec θ ) d θ =\displaystyle \int_{\pi/4}^{\pi/3} \left(\tan\theta + \cot\theta\cos\theta + \sec\theta \right) \ d\theta


And solving this elementary definite integral gives us the value:

ln ( ( 3 + 1 ) 2 6 ) + ( 1 2 1 2 ) \ln\left({\frac{(\sqrt{3} + 1)^2}{\sqrt{6}}}\right) +\left(\frac{1}{2} - \frac{1}{\sqrt{2}}\right)

And therefore A + B + C + D + E = 15 \large{A+B+C+D+E = \boxed{15}} .

HOLY CRAP!!!!!! Where did you get this question from?

Pi Han Goh - 5 years, 11 months ago

Log in to reply

One of my colleagues suggested me this problem. By the way, why an exclamation like "Holy Crap" ?? Is this problem already present in Brilliant?

Satyajit Mohanty - 5 years, 11 months ago

Log in to reply

Nope. KEEP POSTING MORE PROBLEMS!!!

Pi Han Goh - 5 years, 11 months ago

Did the exact same! Dominated Convergence Theorem can be a party pooper many a times.

Kartik Sharma - 5 years, 9 months ago

Log in to reply

Yeah! Have you tried this? - 200 Followers Problem - A Logarithmic Integral!

Satyajit Mohanty - 5 years, 9 months ago

Log in to reply

Which Book is this And from where i can buy it?

Sahil Singh - 5 years, 2 months ago

0 pending reports

×

Problem Loading...

Note Loading...

Set Loading...