Bounding the Circle

Geometry Level 5

The area of a circle with radius 1 is equal to π \pi . One way to determine the value of π \pi is by inscribing and circumscribing regular polygons. For instance, it is obvious from the drawing above that the circle's area is greater than that of the smaller square but smaller than that of the bigger square. This shows that 2 < π < 4 2 < \pi < 4 --using squares we find the value of π \pi within a range of 4 2 = 2 4 - 2 = 2 .

In the same way, using a circumscribed and an inscribed regular octagon, we find that 2.82842 < π < 3.31371 2.82842 < \pi < 3.31371 , with a range of 0.48529 0.48529 .

Now suppose that instead we inscribe and circumscribe regular 16-gons, obtain the approximation A i n s c < π < A c i r c s c A_{insc} < \pi < A_{circsc} . What is the range of this approximation?


The answer is 0.121130419.

This section requires Javascript.
You are seeing this because something didn't load right. We suggest you, (a) try refreshing the page, (b) enabling javascript if it is disabled on your browser and, finally, (c) loading the non-javascript version of this page . We're sorry about the hassle.

3 solutions

Arjen Vreugdenhil
Feb 15, 2016

The area of a circumscribed regular n n -gon consists of n n triangles with width 2 tan ( 18 0 / n ) 2 \tan (180^\circ/n) and height 1: A c i r c s c = n tan ( 18 0 n ) . A_{circsc} = n\cdot \tan \left(\frac{180^\circ}{n}\right). The inscribed regular n n -gon can likewise be split into n n triangles with width 2 sin ( 18 0 / n ) 2\sin (180^\circ/n) and height cos ( 18 0 / n ) \cos (180^\circ/n) , so that A i n s c = n sin ( 18 0 n ) cos ( 18 0 n ) . A_{insc} = n\cdot \sin \left(\frac{180^\circ}{n}\right) \cos \left(\frac{180^\circ}{n}\right).

Substituting n = 16 n = 16 we find the values A c i r c s c 3.182598 ; A i n s c 3.061467. A_{circsc} \approx 3.182598; \ \ A_{insc} \approx 3.061467. Subtraction gives a range of 0.121130 \boxed{0.121130} .

Alternatively, the range is equal to n tan ( 18 0 n ) sin 2 ( 18 0 n ) . n\cdot \tan \left(\frac{180^\circ}{n}\right) \cdot \sin^2 \left(\frac{180^\circ}{n}\right).

Harsh Khatri
Feb 15, 2016

We generalise it for a regular n-sided polygon.

R a n g e = A c i r c s c A i n s c Range = A_{circsc} - A_{insc}

R a n g e = n r 2 tan ( π n ) n r 2 sin ( 2 π n ) 2 \displaystyle \Rightarrow Range = nr^{2} \displaystyle \tan(\frac{\pi}{n}) - \frac{nr^{2}\displaystyle \sin(\frac{2\pi}{n})}{2}

Substituting n=16 and r=1, we get :

R a n g e = 16 × ( tan ( π 16 ) sin ( π 8 ) 2 ) \displaystyle \Rightarrow Range = 16\times \Big( \tan(\frac{\pi}{16}) - \frac{\sin(\frac{\pi}{8})}{2} \Big)

R a n g e = 0.121130419 \displaystyle \Rightarrow Range = \boxed{0.121130419}

A i n s c = n 2 R i n s c 2 S i n 360 n . A c i r c s c = n 2 R c i r c s c 2 S i n 360 n , b u t 1 = R i n c s c = R c i r c s c C o s 180 n . A c i r c s c = n 2 ( R i n s c C o s 180 n ) 2 S i n 360 n . R a n g e = A c i r c s c A i n s c = n 2 R i n s c 2 S i n 360 n { ( 1 C o s 180 n ) 2 1 } R a n g e = 1 2 16 1 2 S i n 360 16 { ( 1 C o s 180 16 ) 2 1 } = . 1211304192 A_{insc}=\frac n 2*R_{insc}^2Sin\dfrac{360}n.\\ A_{circsc}=\frac n 2*R_{circsc}^2Sin\dfrac{360}n , ~~but ~1=R_{incsc}=R_{circsc}Cos\dfrac{180}n .\\ \implies~ A_{circsc}=\frac n 2*\left (\dfrac{R_{insc}}{Cos\dfrac{180}n}\right )^2*Sin\dfrac{360}n.\\ \therefore ~ Range=A_{circsc} - A_{insc}=\frac n 2*R_{insc}^2*Sin\dfrac{360}n \left \{ \left (\dfrac 1 {Cos\dfrac{180}n}\right )^2 - 1 \right \}\\ Range=\frac 1 2*16*1^2*Sin\dfrac{360}{16} \left \{ \left (\dfrac1{Cos\dfrac{180}{16}}\right )^2 - 1 \right \}=.1211304192

0 pending reports

×

Problem Loading...

Note Loading...

Set Loading...