100 followers problem-1

1 100 + 2 100 + 3 100 + + 10 0 100 \large1^{100}+2^{100}+3^{100}+\ldots+100^{100}

Find the last two digits of the above expression.


The answer is 30.

This section requires Javascript.
You are seeing this because something didn't load right. We suggest you, (a) try refreshing the page, (b) enabling javascript if it is disabled on your browser and, finally, (c) loading the non-javascript version of this page . We're sorry about the hassle.

2 solutions

Tijmen Veltman
Jun 3, 2015

Let X = n = 1 100 n 100 X=\sum_{n=1}^{100} n^{100} . We need to find X ( mod 100 ) X (\text{mod }100) , which amounts to finding X ( mod 4 ) X (\text{mod }4) and X ( mod 25 ) X (\text{mod }25) .

Euler-Fermat tells us that a 2 1 ( mod 4 ) a^2\equiv 1 (\text{mod }4) for a a coprime to 4 4 , hence so is a 100 a^{100} . If a a is not coprime to 4 4 (i.e. even), then certainly a 100 0 ( mod 4 ) a^{100}\equiv 0 (\text{mod }4) . Hence we get X 50 0 + 50 1 50 ( mod 4 ) X\equiv 50\cdot 0+50\cdot 1\equiv 50 (\text{mod }4) .

Likewise, a 20 1 ( mod 25 ) a^{20}\equiv 1 (\text{mod }25) for a a coprime to 25 25 , hence so is a 100 a^{100} giving us X 80 1 + 20 0 80 ( mod 25 ) X\equiv 80\cdot 1+20\cdot 0\equiv 80 (\text{mod }25) .

Combining this gives us, thanks to the Chinese remainder theorem, the unique solution X 30 ( mod 25 ) X\equiv 30 (\text{mod }25) and X 30 ( mod 4 ) X\equiv 30 (\text{mod }4) , therefore X 30 ( mod 100 ) X\equiv \boxed{30} (\text{mod }100) .

We note that for i , j = 0 , 1 , 2 , . . . 9 i,j = 0,1,2,...9 , ( 10 i + j ) 100 j 100 ( m o d 100 ) (10i+j)^{100} \equiv j^{100} \pmod {100} .

k = 1 100 k 100 10 k = 1 10 k 100 ( m o d 100 ) \begin{aligned} \sum_{k=1}^{100} {k^{100}} & \equiv 10 \sum _{k=1} ^{10} {k^{100}} \pmod{100} \end{aligned}

Since a = 1 , 3 , 7 , 9 a=1,3,7,9 are coprimes of 10 10 , then Euler's totient theorem applies:

a ϕ ( 10 ) 1 ( m o d 10 ) a 4 1 ( m o d 10 ) a 100 a 4 × 25 1 ( m o d 10 ) 5 100 5 ( m o d 10 ) 2 100 2 5 × 5 × 4 3 2 5 × 4 2 5 × 4 2 4 6 ( m o d 10 ) 4 100 2 100 × 2 6 ( m o d 10 ) 6 100 2 100 3 100 6 ( m o d 10 ) 8 100 2 100 × 3 6 ( m o d 10 ) 1 0 100 0 ( m o d 10 ) \begin{aligned} \Rightarrow a^{\phi{(10)}} & \equiv 1 \pmod{10} \\ a^{4} & \equiv 1 \pmod{10} \\ \Rightarrow a^{100} & \equiv a^{4\times 25} \equiv 1 \pmod{10} \\ 5^{100} & \equiv 5 \pmod{10} \\ 2^{100} & \equiv 2^{5\times 5 \times 4} \equiv 32^{5 \times 4} \equiv 2^{5 \times 4} \equiv 2^{4} \equiv 6 \pmod{10} \\ 4^{100} & \equiv 2^{100\times 2} \equiv 6 \pmod{10} \\ 6^{100} & \equiv 2^{100}3^{100} \equiv 6 \pmod{10} \\ 8^{100} & \equiv 2^{100\times 3} \equiv 6 \pmod{10} \\ 10^{100} & \equiv 0 \pmod{10} \end{aligned}

k = 1 100 k 100 10 k = 1 10 k 100 ( m o d 100 ) 10 ( 1 + 6 + 1 + 6 + 5 + 6 + 1 + 6 + 1 + 0 ) ( m o d 10 ) 330 ( m o d 10 ) 30 ( m o d 10 ) \begin{aligned} \Rightarrow \sum_{k=1}^{100} {k^{100}} & \equiv 10 \sum _{k=1} ^{10} {k^{100}} \pmod{100} \\ & \equiv 10 (1+6+1+6+5+6+1+6+1 +0) \pmod{10} \\ & \equiv 330 \pmod{10} \\ & \equiv \boxed{30} \pmod{10} \end{aligned}

Moderator note:

It is not entirely clear how you move from line 2 to line 3 of your solution. Can you clarify what you did? And why do we need two ( m o d 100 ) \pmod{100} in the line 3?

Slight improvement: With the expression congruent to 10 i = 1 9 i 100 10 \displaystyle \sum_{i=1}^9 i^{100} , we can conclude that the last digit of it is 0. So we just need to work to find the last digit of i = 1 9 i 100 \displaystyle \sum_{i=1}^9 i^{100} thus simplify a lot of calculation.

Despite what I've said, there's still a simpler approach that is don't have much calculation. Hints: Carmichael function, Chinese Remainder Theorem, Euler totient function.

Thanks for guiding me through thoroughly. I have rewritten the solution.

Chew-Seong Cheong - 6 years ago

0 pending reports

×

Problem Loading...

Note Loading...

Set Loading...