100 followers Problem

Calculus Level 5

4 cos ( e x ) = 2 x + 2 x \large 4\cos(e^{x})=2^{x}+2^{-x} Find the number of solutions of equation above.

You may use ln ( 2 π ) < log 2 ( 2 + 3 ) \ln(2\pi)<\log_2 (2+\sqrt{3}) .


The answer is 4.

This section requires Javascript.
You are seeing this because something didn't load right. We suggest you, (a) try refreshing the page, (b) enabling javascript if it is disabled on your browser and, finally, (c) loading the non-javascript version of this page . We're sorry about the hassle.

1 solution

Chew-Seong Cheong
Sep 21, 2018

Consider the following

4 cos ( e x ) = 2 x + 2 x = e x ln 2 + e x ln 2 Divide both sides by 4 cos ( e x ) = e x ln 2 + e x ln 2 4 Let u = e x cos u = 1 4 ( u ln 2 + u ln 2 ) where u ( 0 , ) \begin{aligned} 4\cos (e^x) & = 2^x + 2^{-x} = e^{x\ln 2} + e^{-x\ln 2} & \small \color{#3D99F6} \text{Divide both sides by }4 \\ \cos (e^x) & = \frac {e^{x\ln 2} + e^{-x\ln 2}}4 & \small \color{#3D99F6} \text{Let }u = e^x \\ \cos u & = \frac 14 \left(u^{\ln 2} + u^{-\ln 2}\right) & \small \color{#3D99F6} \text{where }u \in (0, \infty) \end{aligned}

Since e x > 0 e^x > 0 for all x x , the domain of u u is ( 0 , ) (0, \infty) . We note that the LHS cos u [ 1 , 1 ] \cos u \in [-1, 1] . From AM-GM inequality, the RHS has a minimum of 1 2 \frac 12 , since u ln 2 + u ln 2 2 u^{\ln 2} + u^{-\ln 2} \ge 2 , and equality occurs when u = 1 u=1 . Therefore, the RHS [ 1 2 , ) \in [\frac 12, \infty) and it is 1 \le 1 , where the solutions exist, when

1 4 ( u ln 2 + u ln 2 ) 1 u ln 2 + u ln 2 4 u 2 ln 2 4 u ln 2 + 1 0 ( u ln 2 2 3 ) ( u ln 2 2 + 3 ) 0 \begin{aligned} \frac 14 \left(u^{\ln 2} + u^{-\ln 2}\right) & \le 1 \\ u^{\ln 2} + u^{-\ln 2} & \le 4 \\ u^{2\ln 2} - 4 u^{\ln 2} + 1 \le 0 \\ \left(u^{\ln 2} - 2 - \sqrt 3\right) \left(u^{\ln 2} - 2 + \sqrt 3\right) & \le 0 \end{aligned}

0.1496 u 6.6859 \implies 0.1496 \le u \le 6.6859 when the RHS is 1 \le 1 . Since the range of u u , 6.6859 0.1496 = 6.5363 > 2 π 6.6859-0.1496 = 6.5363 > 2\pi , there are 4 \boxed 4 solutions as confirmed by the graph below (LHS = blue line, RHS = red line).

0 pending reports

×

Problem Loading...

Note Loading...

Set Loading...