100 followers problem

Calculus Level 4

n = 1 ( 1 + 1 n 100 ) ( 1 ) n 1 = π a \large \prod _{ n=1 }^{ \infty }{ \left( 1+\frac { 1 }{ \left\lfloor \sqrt [ 100 ]{ n } \right\rfloor } \right) }^{(-1)^{n-1}} =\frac { \pi }{ a }

Find the value of a a that satisfies the above equation.


The answer is 2.

This section requires Javascript.
You are seeing this because something didn't load right. We suggest you, (a) try refreshing the page, (b) enabling javascript if it is disabled on your browser and, finally, (c) loading the non-javascript version of this page . We're sorry about the hassle.

2 solutions

Let I = n 1 ( 1 + 1 n m ) ( 1 ) n 1 I=\prod_{n\ge 1}\left(1+\frac{1}{\lfloor\sqrt[m]{n}\rfloor}\right)^{(-1)^{n-1}} Note that whenever k m n ( k + 1 ) m 1 k^m\le n\le (k+1)^m-1 , for k = 1 , 2 , k=1,2,\cdots , we have n m = k \lfloor\sqrt[m]{n}\rfloor=k . Also, note that this happens for ( k + 1 ) m k m (k+1)^{m}-k^{m} number of integers, which is an odd number. Hence, for example, n = k m ( k + 1 ) m 1 ( 1 + 1 n m ) ( 1 ) n 1 = ( 1 + 1 k ) ( 1 ) k 1 \prod_{n= k^m}^{(k+1)^m-1}\left(1+\frac{1}{\lfloor\sqrt[m]{n}\rfloor}\right)^{(-1)^{n-1}}=\left(1+\frac{1}{k}\right)^{(-1)^{k-1}} Thus, the product becomes k 1 ( 1 + 1 k ) ( 1 ) k 1 = 2 1 2 3 4 3 4 5 \prod_{k\ge 1}\left(1+\frac{1}{k}\right)^{(-1)^{k-1}}=\frac{2}{1}\cdot\frac{2}{3}\cdot\frac{4}{3}\cdot\frac{4}{5}\cdots which is the famous Walli's product and hence is equal to π 2 \frac{\pi}{2} . Thus the answer is 2 \boxed{2} .

Akeel Howell
Jun 4, 2017

n = 1 ( 1 + 1 n 100 ) ( 1 ) n 1 = π a \large \displaystyle \prod _{ n=1 }^{ \infty }{ \left( 1+\frac { 1 }{ \left\lfloor \sqrt [ 100 ]{ n } \right\rfloor } \right) }^{(-1)^{n-1}} =\frac { \pi }{ a }

Taking logs on both sides of this equation shows us that ln π a = n = 1 ( 1 ) n 1 ln ( 1 + 1 n 100 ) \ln{\frac{\pi}{a}} = \displaystyle \sum_{ n=1 }^{ \infty }{ (-1)^{ n-1 } \ln{\left( 1+\frac{1}{ \left\lfloor \sqrt [ 100 ]{ n } \right\rfloor } \right) }}

Upon expanding this sum, we see that ln π a = ln 2 ln 3 2 + ln 4 3 \displaystyle \ln{\frac{ \pi }{ a }} \space = \space \ln{2} - \ln{\frac{3}{2}} + \ln{\frac{4}{3}} - \cdots

ln π a = n = 1 ( 1 ) n 1 ln n + 1 n = ln ( 2 × 2 3 × 4 3 × ) \displaystyle \implies \ln{\frac{\pi}{a}} \ = \sum_{n=1}^{\infty}{ (-1)^{n-1} \ln{\frac{n+1}{n}} } \ = \ \ln{ \left( 2 \times \frac{2}{3} \times \frac{4}{3} \times \cdots \right) }

The product contained in the logarithm above is the Wallis' product, which evaluates to π 2 \dfrac{\pi}{2} .

Therefore, ln π a = ln π 2 \ln{\dfrac{\pi}{a}} \ = \ \ln{\dfrac{\pi}{2}} so a = 2 a \ = \ 2 .

0 pending reports

×

Problem Loading...

Note Loading...

Set Loading...