100 followers problem-2

Algebra Level 3

log 100 2 + log 100 2 4 + log 100 2 8 + log 100 2 16 + \large\log_{100}{\sqrt{2}}+\log_{100}{\sqrt[4]{2}}+\log_{100}{\sqrt[8]{2}}+\log_{100}{\sqrt[16]{2}}+\ldots Let A A denote the value of series above. Find the value of 100 A \lfloor100A\rfloor .


The answer is 15.

This section requires Javascript.
You are seeing this because something didn't load right. We suggest you, (a) try refreshing the page, (b) enabling javascript if it is disabled on your browser and, finally, (c) loading the non-javascript version of this page . We're sorry about the hassle.

1 solution

A = log 100 2 + log 100 2 4 + log 100 2 8 + log 100 2 16 + . . . = 1 2 log 100 2 + 1 4 log 100 2 + 1 8 log 100 2 + 1 16 log 100 2 + . . . = 1 2 ( 1 1 1 2 ) log 100 2 = log 100 2 \begin{aligned} A & = \log_{100} {\sqrt{2}} + \log_{100} {\sqrt[4]{2}} + \log_{100} {\sqrt[8]{2}} + \log_{100} {\sqrt[16]{2}} + ...\\ & = \frac{1}{2} \log_{100} {2} + \frac{1}{4} \log_{100} {2} + \frac{1}{8} \log_{100} {2} + \frac{1}{16} \log_{100} {2} + ... \\ & = \frac{1}{2}\left(\frac{1}{1-\frac{1}{2}} \right)\log_{100} {2} = \log_{100} {2} \end{aligned}

100 A = 100 log 100 2 = 100 × log 10 2 log 10 100 = 100 × 0.3010 2 = 15 \begin{aligned} \Rightarrow \lfloor 100A \rfloor & = \left \lfloor 100 \log_{100} {2} \right \rfloor = \left \lfloor 100 \times \frac {\log_{10} {2}} {\log_{10} {100}} \right \rfloor \\ & = \left \lfloor 100 \times \frac {0.3010} {2} \right \rfloor = \boxed{15} \end{aligned}

Moderator note:

Right, this is a standard geometric progression sum approach.

Bonus question : With your solution, you need to know the value of log 10 2 \log_{10} 2 to at least n n significant figures. What is this value of n n ? And with this value of n n , find the value log 10 2 \log_{10} 2 up to n n significant figures without the use of tables and calculators.

Sir, can we actually compute log 2 without calculator or log tables ? If yes, then please share how. I have seen it for l n ln but not for base 10.

Vishal Yadav - 5 years, 7 months ago

0 pending reports

×

Problem Loading...

Note Loading...

Set Loading...