100 Followers Problem

Calculus Level 4

d x e 5 x ( e 2 x + e 2 x ) 3 4 = q + e r x p + C \large \int \frac{dx}{\sqrt{e^{5x}}\cdot \sqrt[4]{(e^{2x} + e^{-2x})^3}} = -\sqrt[p]{q + e^{-rx}} + C

Evaluate the integral above and find p + q + r p + q + r .

Notation: C C denotes the constant of integration.


The answer is 9.

This section requires Javascript.
You are seeing this because something didn't load right. We suggest you, (a) try refreshing the page, (b) enabling javascript if it is disabled on your browser and, finally, (c) loading the non-javascript version of this page . We're sorry about the hassle.

2 solutions

Chew-Seong Cheong
Sep 25, 2017

d x e 5 x ( e 2 x + e 2 x ) 3 4 = q + e r x p + C Differentiate both sides w.r.t. x 1 e 5 x ( e 2 x + e 2 x ) 3 4 = d d x ( q + e r x p + C ) 1 e 5 2 x ( e 2 x + e 2 x ) 3 4 = 1 p ( q + e r x ) 1 p 1 ( r e r x ) 1 e 4 x ( 1 + e 4 x ) 3 4 = r p e r x ( q + e r x ) p 1 p \begin{aligned} \int \frac {dx}{\sqrt{e^{5x}}\sqrt[4]{(e^{2x}+e^{-2x})^3}} & = - \sqrt[p]{q+e^{-rx}} + C & \small \color{#3D99F6} \text{Differentiate both sides w.r.t. }x \\ \frac 1{\sqrt{e^{5x}}\sqrt[4]{(e^{2x}+e^{-2x})^3}} & = \frac d{dx} \left(- \sqrt[p]{q+e^{-rx}} + C \right) \\ \frac 1{e^{\frac 52x} \left(e^{2x}+e^{-2x}\right)^\frac 34} & = - \frac 1p \left(q+e^{-rx}\right)^{\frac 1p -1}\left(-re^{-rx}\right) \\ \frac 1{e^{4x} \left(1+e^{-4x}\right)^\frac 34} & = \frac r {p e^{rx} \left(q+e^{-rx}\right)^{\frac {p -1}p}} \end{aligned}

Comparing the constants on both sides we get p = 4 p=4 , q = 1 q=1 and r = 4 r=4 . p + q + r = 4 + 1 + 4 = 9 \implies p+q+r = 4+1+4 = \boxed{9} .

Aman Deep Singh
Dec 24, 2015

0 pending reports

×

Problem Loading...

Note Loading...

Set Loading...