100 Roots

Algebra Level 4

Let the 100 roots of the equation x 100 5 x + 2 = 0 x^{100}-5x+2=0 be r 1 , r 2 , r 3 , , r 100 r_{1}, r_{2}, r_{3},\ldots, r_{100} . Find r 1 100 + r 2 100 + r 3 100 + + r 100 100 . r_{1}^{100}+r_{2}^{100}+r_{3}^{100}+\cdots+r_{100}^{100} .


The answer is -200.

This section requires Javascript.
You are seeing this because something didn't load right. We suggest you, (a) try refreshing the page, (b) enabling javascript if it is disabled on your browser and, finally, (c) loading the non-javascript version of this page . We're sorry about the hassle.

2 solutions

Viki Zeta
Oct 16, 2016

p ( x ) = x 100 5 x + 2 p ( x ) = 0 , for x = r 1 , r 2 , r 100 p ( r 1 ) = 0 r 1 100 5 r 1 + 2 = 0 r 1 100 = 5 r 1 2 p ( r n ) = 0 r n 100 5 r n + 2 = 0 r n 100 = 5 r n 2 Sum of r 1 100 + r 2 100 + + r 100 100 = 5 r 1 2 + 5 r 2 2 + + 5 r 100 2 100 terms = 5 r 1 + 5 r 2 + + 5 r 100 100 times + 2 2 2 2 100 times = 5 ( r 1 + r 2 + r 3 + r 100 ) + 100 × ( 2 ) = 5 ( 0 ) 200 Using Vieta’s formula sum of zeros of a polynomial = b a , here b=0, so sum of zeros is 0 = 200 p(x) = x^{100} - 5x +2\\ p(x) = 0, \text{ for } x = r_1, r_2, \ldots r_{100} \\ p(r_1) = 0 \\ r_1^{100} - 5r_1 + 2 = 0 \\ \implies r_1^{100} = 5r_1 - 2 \\ p(r_n) = 0 \\ r_n^{100}-5r_n+2 = 0 \\ r_n^{100} = 5r_n - 2 \\ \text{Sum of }r_1^{100} + r_2^{100} + \ldots + r_{100}^{100} \\ = \underbrace{5r_1 - 2 + 5r_2 - 2 + \ldots + 5r_{100} - 2}_{\text{100 terms}} \\ = \underbrace{5r_1 + 5r_2 + \ldots + 5r_{100}}_{\text{100 times}} + \underbrace{-2 -2 -2 -\ldots -2}_{\text{100 times}} \\ = 5(r_1 + r_2 + r_3 + \ldots r_{100}) + 100 \times (-2) \\ = 5(0) - 200 ~~ \boxed{\text{Using Vieta's formula sum of zeros of a polynomial = } \dfrac{-b}{a} \text{, here b=0, so sum of zeros is 0}} \\ \boxed{= -200}

Jun Shin
Oct 16, 2016

Define that for roots of a polynomial with complex coefficients r 1 , r 2 , r 3 , , r n r_{1}, r_{2}, r_{3},\cdots,r_{n} , P k = r 1 k + r 2 k + r 3 k + + r n k P_{k}=r_{1}^{k}+r_{2}^{k}+r_{3}^{k}+\cdots+r_{n}^{k} and S k S_{k} denotes the k k -th symmetric sum of the roots. P_{100} is what we want to find. We use Newton's Sums for the roots: P 100 = S 1 P 99 S 2 P 98 + S 3 P 97 S 4 P 96 + S 98 P 2 + S 99 P 1 100 S 100 P_{100}=S_{1}P_{99}-S_{2}P_{98}+S_{3}P_{97}-S_{4}P_{96}+\cdots-S_{98}P_{2}+S_{99}P_{1}-100S_{100} . From Viete's Formula we know P 1 = S 1 = S 2 = S 3 = = S 97 = S 98 = 0 P_{1}=S_{1}=S_{2}=S_{3}=\cdots=S_{97}=S_{98}=0 and S 99 = 5 , S 100 = 2 S_{99}=5, S_{100}=2 Substituting the values, P 100 = 100 S 100 = 200 P_{100}=-100S_{100}=-200

0 pending reports

×

Problem Loading...

Note Loading...

Set Loading...