100 solutions, 700 upvotes problem

( 2016 0 ) + 2 ( 2016 1 ) + + 2 2016 ( 2016 2016 ) ( 2016 0 ) + ( 2016 1 ) + + ( 2016 2016 ) \dfrac{\binom{2016}{0}+2\binom{2016}{1}+\cdots+2^{2016}\binom{2016}{2016}}{\binom{2016}{0}+\binom{2016}{1}+\cdots+\binom{2016}{2016}}

If the above expression is in the form A 2016 A^{2016} , find A A .


The answer is 1.50.

This section requires Javascript.
You are seeing this because something didn't load right. We suggest you, (a) try refreshing the page, (b) enabling javascript if it is disabled on your browser and, finally, (c) loading the non-javascript version of this page . We're sorry about the hassle.

1 solution

Rohit Udaiwal
Mar 16, 2016

We have The Binomial Theorem as ( a + b ) n = n = 0 2016 ( n k ) a n k b k , (a+b)^n=\displaystyle \sum_{n=0}^{2016} \binom{n}{k} a^{n-k}b^k, And similarly when a = 1 a=1 : ( 1 + b ) n = n = 0 2016 ( n k ) b k . (1+b)^n=\displaystyle \sum_{n=0}^{2016} \binom{n}{k} b^k. We use it to investigate the required expression as follows: ( 2016 0 ) + 2 ( 2016 1 ) + + 2 2016 ( 2016 2016 ) ( 2016 0 ) + ( 2016 1 ) + ( 2016 2016 ) = n = 0 2016 2 k ( 2016 k ) n = 0 2016 ( 2016 k ) = ( 1 + 2 ) 2016 ( 1 + 1 ) 2016 = 3 2016 2 2016 = ( 3 2 ) 2016 \begin{aligned} \dfrac{\binom{2016}{0}+2\binom{2016}{1}+\ldots+2^{2016}\binom{2016}{2016}}{\binom{2016}{0}+\binom{2016}{1}+\ldots\binom{2016}{2016}}=&\dfrac{\displaystyle \sum_{n=0}^{2016} 2^k \binom{2016}{k}}{ \displaystyle \sum_{n=0}^{2016} \binom{2016}{k}}=& \dfrac{(1+2)^{2016}}{(1+1)^{2016}} \\ =& \dfrac{3^{2016}}{2^{2016}} \\ =& \left(\dfrac{3}{2}\right)^{2016} \end{aligned} Therefore the answer is [ ( 3 2 ) 2016 ] 1 2016 = 3 2 \left[\left(\dfrac{3}{2}\right)^{2016}\right]^{\frac{1}{2016}}=\boxed{\dfrac{3}{2}} .

0 pending reports

×

Problem Loading...

Note Loading...

Set Loading...