1000th digit!

Algebra Level 2

What is the 100 0 th 1000^\text{th} digit to the right of the decimal point in the decimal representation of ( 1 + 2 ) 3000 (1+\sqrt{2})^{3000} ?


The answer is 9.

This section requires Javascript.
You are seeing this because something didn't load right. We suggest you, (a) try refreshing the page, (b) enabling javascript if it is disabled on your browser and, finally, (c) loading the non-javascript version of this page . We're sorry about the hassle.

2 solutions

Thomas Hayes
Dec 31, 2017

Here's a rigorous solution to go along with Darryl Stein's nice observations.

Use the Binomial Theorem to write x = ( 1 + 2 ) 3000 = i = 0 3000 ( 3000 i ) 2 i x = (1 + \sqrt{2})^{3000} = \sum_{i=0}^{3000} {3000 \choose i} \sqrt{2}^i Notice that the even terms in this sum are integers. Notice that the binomial expansion of the "conjugate" expression, y = ( 1 2 ) 3000 y = (1 - \sqrt{2})^{3000} is the same thing, but with the odd terms negated: y = ( 1 2 ) 3000 = i = 0 3000 ( 3000 i ) ( 2 ) i y = (1 - \sqrt{2})^{3000} = \sum_{i=0}^{3000} {3000 \choose i} (-\sqrt{2})^i Adding these formulae, the odd terms cancel, and we see that x + y x + y is a (fairly large) integer! x + y = 2 i = 0 1500 ( 3000 2 i ) 2 i x + y = 2 \sum_{i = 0}^{1500} {3000 \choose 2i} 2^i Put another way, x x and y y are additive inverses (mod 1). Interestingly, x x and y y are also multiplicative inverses (over the reals), since ( 1 + 2 ) ( 1 2 ) = 1 2 = 1 (1 + \sqrt{2})(1 - \sqrt{2}) = 1 - 2 = -1 , and 1 3000 = 1 -1^{3000} = 1 ; however, we will not need this fact.

Next we will show that 0 < y < 1 0 1000 0 < y < 10^{-1000} and hence y y 's 1000'th digit after the decimal place is 0. Equivalently, 0 < ( 2 1 ) 3 < 1 10 0 < (\sqrt{2} - 1)^3 < \frac{1}{10} which follows because 2 < 10 7 \sqrt{2} < \frac{10}{7} and ( 3 7 ) 3 = 27 343 < 1 10 \left( \frac{3}{7}\right) ^3 = \frac{27}{343} < \frac{1}{10} .

Finally, since x x and y y are additive inverses (mod 1), and y y has a 0 in its 1000'th decimal digit, and some nonzeros in later decimal digits, x x must have a 9 in its 1000'th decimal digit. Here we also used the fact that both x x and y y are positive.

Just finished posting this and realized there is a cute alternative way to see that y < 1 0 1000 y < 10^{-1000} As I pointed out, x x and y y are multiplicative inverses. So it suffices to prove that x > 1 0 1000 x > 10^{1000} But we know that x x + y = 2 i = 0 1500 ( 3000 2 i ) 2 i x \approx x + y = 2 \sum_{i=0}^{1500} {3000 \choose 2i} 2^i If we pair the first and last terms, second and second-last, and so on, we find that the middle pair has the smallest average, namely 2^{750}, so x + y > 2 i = 0 1500 ( 3000 2 i ) 2 750 . x + y > 2 \sum_{i=0}^{1500} {3000 \choose 2i} 2^{750}. Finally, since the even binomial coefficients have the same sum as the odd ones, namely \frac{1}{2} 2^[3000} we have = 2 3750 = 2^{3750} and it is easy to see 2 3.75 > 10 2^{3.75} > 10 . Using a calculator, I find ( 1 + 2 ) 3 2 3.8146 (1 + \sqrt{2})^3 \approx 2^{3.8146} so this wasn't such a bad approximation.

Thomas Hayes - 3 years, 5 months ago

Funny that you can't add a solution if you didn't get the right answer...

Consider this recurrence relation:

a n = 2 a n 1 + a n 2 a 0 = 2 a 1 = 2 a_{n} = 2 \cdot a_{n - 1} + a_{n - 2}\\ a_0 = 2\\ a_1 = 2

The solution is: a n = ( 1 + 2 ) n + ( 1 2 ) n a_n = (1 + \sqrt{2})^n + (1 - \sqrt{2})^n .

(I didn't know about Pisot–Vijayaraghavan numbers, but the characteristic polynomial of the recurrence relation above and the minimal polynomial of 1 + 2 1 + \sqrt{2} are the same and that's the link between Pisot–Vijayaraghavan numbers and recurrence relations).

We are interested in a 3000 a_{3000} . By definition, this is an integer, and it equals a n = ( 1 + 2 ) 3000 + ( 1 2 ) 3000 a_n = (1 + \sqrt{2})^{3000} + (1 - \sqrt{2})^{3000} .

To estimate the second term: ( 1 2 ) 3000 = ( 2 1 ) 3000 = 1 0 l o g 10 ( ( 2 1 ) 3000 ) = 1 0 3000 l o g 10 ( 2 1 ) 1 0 1148.327056013589 1 0 1149 1 0 0.672943986411 4.7091658552 1 0 1149 (1 - \sqrt{2})^{3000} = (\sqrt{2} - 1)^{3000} = 10^{log_{10}((\sqrt{2} - 1)^{3000})} = 10^{3000 \cdot log_{10}(\sqrt{2} - 1)} \approx 10^{-1148.327056013589} \approx 10^{-1149} \cdot 10^{0.672943986411} \approx 4.7091658552 \cdot 10^{-1149} .

With the recurrence relation, we can calculate with a computer that:

a 3000 = 212351832735661211850036721375886776541419741846830798047797649326633830265800348754922726611482329696978386941712386628313233722329396831729262976271935913028968686217854171694479750950007138598702047874928937006048825941728804726445558472950595484372408258805255973963893612565744659452588885634672251124694961267804898152795815102383284947073021158623268979166708897371716288813328574125896002105522342531264500667666010593004805641201407485523369661123270309321721319990425609586215891216379523104027105154328230715943028688427964504737016740719705648004760033477439060120822056401856842664843498264757732196936579380206418720952006865612562210412207828131451616365295898234402537336762320382508754921202825754807404557820007055121102645156842126064526301550033503710326243580686202343689290385612858013208292479048892324242891437926936379579771661271219677064396120739803309230502981355688484907132471136023854101013706580243115362738647939748123348684831357244274136458378908357255958491925980356588743876497779219636407873285945202016359307298985412901504489975280743182186498490579824057349140600741150807126892554341838245583515532450000002 a_{3000} = 212351832735661211850036721375886776541419741846830798047797649326633830265800348754922726611482329696978386941712386628313233722329396831729262976271935913028968686217854171694479750950007138598702047874928937006048825941728804726445558472950595484372408258805255973963893612565744659452588885634672251124694961267804898152795815102383284947073021158623268979166708897371716288813328574125896002105522342531264500667666010593004805641201407485523369661123270309321721319990425609586215891216379523104027105154328230715943028688427964504737016740719705648004760033477439060120822056401856842664843498264757732196936579380206418720952006865612562210412207828131451616365295898234402537336762320382508754921202825754807404557820007055121102645156842126064526301550033503710326243580686202343689290385612858013208292479048892324242891437926936379579771661271219677064396120739803309230502981355688484907132471136023854101013706580243115362738647939748123348684831357244274136458378908357255958491925980356588743876497779219636407873285945202016359307298985412901504489975280743182186498490579824057349140600741150807126892554341838245583515532450000002 .

So:

( 1 + 2 ) 3000 a 3000 4.7091658552 1 0 1149 = 212351832735661211850036721375886776541419741846830798047797649326633830265800348754922726611482329696978386941712386628313233722329396831729262976271935913028968686217854171694479750950007138598702047874928937006048825941728804726445558472950595484372408258805255973963893612565744659452588885634672251124694961267804898152795815102383284947073021158623268979166708897371716288813328574125896002105522342531264500667666010593004805641201407485523369661123270309321721319990425609586215891216379523104027105154328230715943028688427964504737016740719705648004760033477439060120822056401856842664843498264757732196936579380206418720952006865612562210412207828131451616365295898234402537336762320382508754921202825754807404557820007055121102645156842126064526301550033503710326243580686202343689290385612858013208292479048892324242891437926936379579771661271219677064396120739803309230502981355688484907132471136023854101013706580243115362738647939748123348684831357244274136458378908357255958491925980356588743876497779219636407873285945202016359307298985412901504489975280743182186498490579824057349140600741150807126892554341838245583515532450000001.9999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999952908341448... (1 + \sqrt{2})^{3000} \approx a_{3000} - 4.7091658552 \cdot 10^{1149} = 212351832735661211850036721375886776541419741846830798047797649326633830265800348754922726611482329696978386941712386628313233722329396831729262976271935913028968686217854171694479750950007138598702047874928937006048825941728804726445558472950595484372408258805255973963893612565744659452588885634672251124694961267804898152795815102383284947073021158623268979166708897371716288813328574125896002105522342531264500667666010593004805641201407485523369661123270309321721319990425609586215891216379523104027105154328230715943028688427964504737016740719705648004760033477439060120822056401856842664843498264757732196936579380206418720952006865612562210412207828131451616365295898234402537336762320382508754921202825754807404557820007055121102645156842126064526301550033503710326243580686202343689290385612858013208292479048892324242891437926936379579771661271219677064396120739803309230502981355688484907132471136023854101013706580243115362738647939748123348684831357244274136458378908357255958491925980356588743876497779219636407873285945202016359307298985412901504489975280743182186498490579824057349140600741150807126892554341838245583515532450000001.9999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999952908341448... .

To get more digits, we can remark that

( 1 + 2 ) ( 1 2 ) = 1 ( 1 + 2 ) 3000 ( 1 2 ) 3000 = 1 ( 1 2 ) 3000 = 1 / ( 1 + 2 ) 3000 1 / a 3000 (1 + \sqrt{2}) (1 - \sqrt{2}) = -1 \Rightarrow (1 + \sqrt{2})^{3000} (1 - \sqrt{2})^{3000} = 1 \Rightarrow (1 - \sqrt{2})^{3000} = 1 / (1 + \sqrt{2})^{3000} \approx 1 / a_{3000} .

The fractional part is then 1 1 / a 3000 1 - 1 / a_{3000} (the 1 is borrowed from a 3000 a_{3000} ). If we want to use only arbitrary precision integer arithmetic to calculate the digits, instead calculate 1 0 k 1 0 k / a 3000 10^k - 10^k / a_{3000} . Because we know the first digit after the decimal point is not 0 (it is 9), the number we calculated can be put right after the decimal point. The last digit we find is likely wrong though, so we leave it off. These are the first 10000 digits after the decimal point:

0.9999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999952908341448372842849399950028571600702976824604622364294277954740573328982841254604611608381805302531989889631310800921145954922295992301756007360554085488955696731711226954906852951911837048468536144596050749191051184688697336359583501287063290676216645166351157543266626388116876585719731331197052231868754023064119426006936034298149574551377664879649871821901260149681645684975759327368314651223621254500537951208965100792431466409979782139882182850247059017844450940655035979481781350720211162465477055680061333845502921589067125593497420796424166819501844592466295996556219629673384496173838167848692542543207227695068210003219784022886926045769609902674991344982708104741437143326386829839595679745526172546953728450596519400061309003146391558813701166223803854555254274174228993218714471892905155238777331758593764890401805747824444254542022506782114300989372298134926934977229380162471645845385559019785041304740668775735462581715960402953493331892878893185953939500493999714590897918214282017116573109943277311990922615411872725506226333087804749236018011597965657768525747865247188123254861589432583005082590584591213919886984341767477483762493042232189898553737650916095742112660492766407033674287015535332423767991242444689438079845362744608193939657370523825177523098026590791544066523741569850850147219096490013130679099923154092416542948268310551316010822246154320526197303016217709821685624717635220739795823924123187182156932661182198188458636326758234547981397686352078217855017370992556781307064909684147168437134776989924009199679451751049463902071325078734830913298092919300478922039915049981436775069764631294555244427773656775976033874151651825477172977355365272140816744612776555341087399480285411816039582955340392622428186544329059791044752703188305422093450163231755612499214835127941203374299609377082285319815967876786649484439753101069672031397428599020725117506952109586811753877365473738437413681941890377760268424324761755950394943183758788668028735377092034491552870881119825181837185102966184009018702288882707564563624506934179688750974857511926101243807641478411329085587568621774527068273061264554966411686308946662247874324443665343317848182648308304843633193092457741108759147340711898447111036284688705080156462824851498096167926419387503557144433132173873965959354397565965382458076760556983413838201526008434832062319276538938893726842337789116984355938224191551697494675067898108346693416985859017247239403210556816922488594094854855235413932961712100433607544744618659749839591376100268945269482193820559932577925216939102214967574912760520116247535582113269186094192090009992027293712833250162322698275639475408937528460726068330611250381830311054608130670957837619324189573923941463129066382742400193855319637200435503498300303863082814894795081105312283781767284889805646109216584262530754772918203257074898493219991463964534496698626812142665289181467387527084504478506221572294904756977921950079221244331037255356955994752356210633010447751070424141892512432253150533618312646687947734200094028904480553155206558881651850671046870772695195511129294430398298176986017257231004431360315016868401457330826177562901661596039051008306069149741584072138510184452637483875635725201959739092559132355780162511282547183024382079845372374626877980481029863261318245625461967196525950352080381998580675972712557149212891915976897930298565718840383151071881817753584736889063288346624700469104490596867063066751415708178393268602390005875448727439495701222422922865959953508776318828518401759572467862944992382912810364002743883004903289473298349225103502230630608441393582302113749973137710656811132771098491917811173713302429661262067353181294928268163220479517468951464746925449073140886499590048423943777743514716180734485824952528680400365637871170306752156323794875955432132631429028315051496586039510824109138337167250176880329209616977516607002103360342868180142143694279512350011957831682002894359153024550940363127136353091677514941482837573784465143817723177673912291852321400764119194381679914684184578860049811274303916058757801810498818713950466399430129938096979494707219922710215593627353437068561876285937547747503834732475569990369400226406155321939720137590155121172062347215908103908356693771933397728105336924160958865893582636421148940801166285466771436500817660369817891640514157352261788550824848393879288398029954939513286940010362258467957581022425480757097205235068130635690719849875017511869361423591239084145627036445128287544940463760413913680119691499760638225764712448045793336523208163752566486859676565710140298564984538752426234224889174862687634141862794506946003671477726253829630835632732481935822647500488063917201208895704472740975731675550308940743056133935299513477020489728050813933338552437733223355308602001427800629813582469878762334009520932220432434198052609021402802746920342205063071808035716554704734117871818412924476957214006490392324254973495066381876398994817977801528358124840992648813247761827146777926376951675661060123650181106399502232996057705929103249168965572309264471446913860365024825841372807029554541211113026962199034781825255622088353311595413110371001235576924391191449479464407085273896295856953130127434143434025433245783191752755533037975193009853278639157303966470944721014617015027004023595112875458010661460596332071567411150879378428671647869005996164094419400618791412626843588400429707215070790307351264142391210098187492872349872552009732342540668808846364955079196060379452066886406688203789150039789454630136474715839424647849103279235224792868592357240695680606037149653321891944297444750960123244477632407320669804287152515784295263456845383811711654436431025686385563115615748967166136066194565572100293540544232112834486048337779791803529425757887187298078639555588404128537032073262289009902431617284851989187622137775250180562198080521907339837570508329902463689858213163728010527979024622115972759446572478052047213501338250617184854189870702484708726555563602482469222769732785212070409643380188354524288470075885642291439778007589734970913513849752819972914277419567202712141853260483080739741758934141338699083477716312287901497539572118118987688527622138119498093524966136895551072703125381775890125162053244834324260748164698463450376785760102678213171813486115047848456250338382111506459450381179340951125111584217923071931006047812803297981427180696103530798313003794013210826753439593604166371373632384470559132750475283791022381516202107974388712666697297756144842264263819634719011097723349703208504296025788058369579990407592868409369145594627954903840539823441630188523961808525238714372820256176793437965941676573051954945589856631713206240607663805047492671305089826826303915500258396860156665300829550517431431072699043416239186508895546515359182208915952583073488845552550549128066960031129667868475175457462745692544456357167694708419967020328450200777422866619468615411655627898507249827125618735746979304605038873442826444508192156287408366225856142745149084627588920575580692876437798574596618831697570317989288481334942536254188644969668106271478257960294324420400712064538896491255990242413034139584695789827221317256631816561749330759683691616703885861908735975421417758269088493909489743445179163102209192752902398244075553412785326038761253470975647776572306897373746782724385344731463672205636888829752783205338204941271326382371103620109336817825673492843693473494966199652600736604629478174912802016694768195857231792891873685685201008777889082942145833403783931162667541228828789032566059182231300988081495455830248649348347205311022998256408737628749942582057656391108193520065133121194916724992417707720646573739088306556703199549146184367251319871048984433873926719920847038163997498344580681356622358629837049626311216379277677696928175630230256500432490344875403335975480835144105743556344435211559931363901113816531804772400894225081370334340494300600597208484808311070387747146950205692411949140497485739042940199255749104794698548737386146555397569131530554975189326071378772516228806751550740534920454485012373363142032940361720559608903129807102930494146796819678553824814816784566071160144072532031466798983346344168737180199039480585556255614350579144464509777316647791265203156311667624151994287370647229242609698055590154797748241492189676005053527307414619599614112862226425696909434636589714132372953535202922567154566184141716615144861249512635795059616348504838242467749731697615407964563853461564526381436692356886832166805012171140412283301991815111577054870812264139727905355385457876573181639048726555231126669154472944727702039255043750733569353842229201457084633070975570998521796314500246528284974464072399913966159738362463340828748726969651619902171607718257865323390933626881277774572099590614962573077104528956624104235766475317933639127540787924027633209179917958605 0.9999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999952908341448372842849399950028571600702976824604622364294277954740573328982841254604611608381805302531989889631310800921145954922295992301756007360554085488955696731711226954906852951911837048468536144596050749191051184688697336359583501287063290676216645166351157543266626388116876585719731331197052231868754023064119426006936034298149574551377664879649871821901260149681645684975759327368314651223621254500537951208965100792431466409979782139882182850247059017844450940655035979481781350720211162465477055680061333845502921589067125593497420796424166819501844592466295996556219629673384496173838167848692542543207227695068210003219784022886926045769609902674991344982708104741437143326386829839595679745526172546953728450596519400061309003146391558813701166223803854555254274174228993218714471892905155238777331758593764890401805747824444254542022506782114300989372298134926934977229380162471645845385559019785041304740668775735462581715960402953493331892878893185953939500493999714590897918214282017116573109943277311990922615411872725506226333087804749236018011597965657768525747865247188123254861589432583005082590584591213919886984341767477483762493042232189898553737650916095742112660492766407033674287015535332423767991242444689438079845362744608193939657370523825177523098026590791544066523741569850850147219096490013130679099923154092416542948268310551316010822246154320526197303016217709821685624717635220739795823924123187182156932661182198188458636326758234547981397686352078217855017370992556781307064909684147168437134776989924009199679451751049463902071325078734830913298092919300478922039915049981436775069764631294555244427773656775976033874151651825477172977355365272140816744612776555341087399480285411816039582955340392622428186544329059791044752703188305422093450163231755612499214835127941203374299609377082285319815967876786649484439753101069672031397428599020725117506952109586811753877365473738437413681941890377760268424324761755950394943183758788668028735377092034491552870881119825181837185102966184009018702288882707564563624506934179688750974857511926101243807641478411329085587568621774527068273061264554966411686308946662247874324443665343317848182648308304843633193092457741108759147340711898447111036284688705080156462824851498096167926419387503557144433132173873965959354397565965382458076760556983413838201526008434832062319276538938893726842337789116984355938224191551697494675067898108346693416985859017247239403210556816922488594094854855235413932961712100433607544744618659749839591376100268945269482193820559932577925216939102214967574912760520116247535582113269186094192090009992027293712833250162322698275639475408937528460726068330611250381830311054608130670957837619324189573923941463129066382742400193855319637200435503498300303863082814894795081105312283781767284889805646109216584262530754772918203257074898493219991463964534496698626812142665289181467387527084504478506221572294904756977921950079221244331037255356955994752356210633010447751070424141892512432253150533618312646687947734200094028904480553155206558881651850671046870772695195511129294430398298176986017257231004431360315016868401457330826177562901661596039051008306069149741584072138510184452637483875635725201959739092559132355780162511282547183024382079845372374626877980481029863261318245625461967196525950352080381998580675972712557149212891915976897930298565718840383151071881817753584736889063288346624700469104490596867063066751415708178393268602390005875448727439495701222422922865959953508776318828518401759572467862944992382912810364002743883004903289473298349225103502230630608441393582302113749973137710656811132771098491917811173713302429661262067353181294928268163220479517468951464746925449073140886499590048423943777743514716180734485824952528680400365637871170306752156323794875955432132631429028315051496586039510824109138337167250176880329209616977516607002103360342868180142143694279512350011957831682002894359153024550940363127136353091677514941482837573784465143817723177673912291852321400764119194381679914684184578860049811274303916058757801810498818713950466399430129938096979494707219922710215593627353437068561876285937547747503834732475569990369400226406155321939720137590155121172062347215908103908356693771933397728105336924160958865893582636421148940801166285466771436500817660369817891640514157352261788550824848393879288398029954939513286940010362258467957581022425480757097205235068130635690719849875017511869361423591239084145627036445128287544940463760413913680119691499760638225764712448045793336523208163752566486859676565710140298564984538752426234224889174862687634141862794506946003671477726253829630835632732481935822647500488063917201208895704472740975731675550308940743056133935299513477020489728050813933338552437733223355308602001427800629813582469878762334009520932220432434198052609021402802746920342205063071808035716554704734117871818412924476957214006490392324254973495066381876398994817977801528358124840992648813247761827146777926376951675661060123650181106399502232996057705929103249168965572309264471446913860365024825841372807029554541211113026962199034781825255622088353311595413110371001235576924391191449479464407085273896295856953130127434143434025433245783191752755533037975193009853278639157303966470944721014617015027004023595112875458010661460596332071567411150879378428671647869005996164094419400618791412626843588400429707215070790307351264142391210098187492872349872552009732342540668808846364955079196060379452066886406688203789150039789454630136474715839424647849103279235224792868592357240695680606037149653321891944297444750960123244477632407320669804287152515784295263456845383811711654436431025686385563115615748967166136066194565572100293540544232112834486048337779791803529425757887187298078639555588404128537032073262289009902431617284851989187622137775250180562198080521907339837570508329902463689858213163728010527979024622115972759446572478052047213501338250617184854189870702484708726555563602482469222769732785212070409643380188354524288470075885642291439778007589734970913513849752819972914277419567202712141853260483080739741758934141338699083477716312287901497539572118118987688527622138119498093524966136895551072703125381775890125162053244834324260748164698463450376785760102678213171813486115047848456250338382111506459450381179340951125111584217923071931006047812803297981427180696103530798313003794013210826753439593604166371373632384470559132750475283791022381516202107974388712666697297756144842264263819634719011097723349703208504296025788058369579990407592868409369145594627954903840539823441630188523961808525238714372820256176793437965941676573051954945589856631713206240607663805047492671305089826826303915500258396860156665300829550517431431072699043416239186508895546515359182208915952583073488845552550549128066960031129667868475175457462745692544456357167694708419967020328450200777422866619468615411655627898507249827125618735746979304605038873442826444508192156287408366225856142745149084627588920575580692876437798574596618831697570317989288481334942536254188644969668106271478257960294324420400712064538896491255990242413034139584695789827221317256631816561749330759683691616703885861908735975421417758269088493909489743445179163102209192752902398244075553412785326038761253470975647776572306897373746782724385344731463672205636888829752783205338204941271326382371103620109336817825673492843693473494966199652600736604629478174912802016694768195857231792891873685685201008777889082942145833403783931162667541228828789032566059182231300988081495455830248649348347205311022998256408737628749942582057656391108193520065133121194916724992417707720646573739088306556703199549146184367251319871048984433873926719920847038163997498344580681356622358629837049626311216379277677696928175630230256500432490344875403335975480835144105743556344435211559931363901113816531804772400894225081370334340494300600597208484808311070387747146950205692411949140497485739042940199255749104794698548737386146555397569131530554975189326071378772516228806751550740534920454485012373363142032940361720559608903129807102930494146796819678553824814816784566071160144072532031466798983346344168737180199039480585556255614350579144464509777316647791265203156311667624151994287370647229242609698055590154797748241492189676005053527307414619599614112862226425696909434636589714132372953535202922567154566184141716615144861249512635795059616348504838242467749731697615407964563853461564526381436692356886832166805012171140412283301991815111577054870812264139727905355385457876573181639048726555231126669154472944727702039255043750733569353842229201457084633070975570998521796314500246528284974464072399913966159738362463340828748726969651619902171607718257865323390933626881277774572099590614962573077104528956624104235766475317933639127540787924027633209179917958605 .

It would have been an interesting question to ask for the 1150th digit to the right of the decimal point, which can still be done without a computer.

Peter Vanbroekhoven - 3 years ago
Darryl Stein
Dec 13, 2017

This is an observation rather than an exact solution.

1 + 2 \sqrt2 is known as the silver ratio and is a Pisot–Vijayaraghavan number, which has the property that higher powers are closer and closer to an integer.

For very high powers of a PV number the resultant number will look like either.

n.99999999999999...

or

n.00000000000000...

By inspection of the first few powers of the silver ratio we can see that odd powers are slightly above an integer and even powers are slightly below an integer.

Therefore, since the power is even (3000) the number will look like

n.9999999999999999...

and the power 3000 is sufficient to make the 9's continue past the 1000th digit of the result - therefore the answer is 9.

Brilliant! Thanks!

Bert Seegmiller - 3 years, 3 months ago

0 pending reports

×

Problem Loading...

Note Loading...

Set Loading...