1024th root

Algebra Level 4

k = 0 10 ( 2 2 k + 1 ) = x 1024 1 , x = ? \large \prod_{k=0}^{10} (2^{2^k}+1) =x^{1024}-1 \qquad, \qquad x = \ ?


The answer is 4.

This section requires Javascript.
You are seeing this because something didn't load right. We suggest you, (a) try refreshing the page, (b) enabling javascript if it is disabled on your browser and, finally, (c) loading the non-javascript version of this page . We're sorry about the hassle.

1 solution

k = 1 1024 ( 2 k + 1 ) = n = 0 m 2 n \prod_{k=1}^{1024} (2^k+1)=\sum_{n=0}^m 2^n

Now we search m:

m = p = 0 10 2 p = 2 11 1 m= \sum_{p=0}^{10}2^p=2^{11}-1

( n = 0 2 11 1 2 n ) + 1 = . . . = 2 2 11 (\sum_{n=0}^{2^{11}-1} 2^n)+1=...=2^{2^{11}}

x = 2 2 11 1024 = 4 \Rightarrow x=\sqrt[1024]{2^{2^{11}}}= \boxed{4}

The problem is incorrect. The product k = 1 1024 ( 2 k + 1 ) \prod_{k = 1}^{1024} (2^k + 1) is not equal to 4 1024 1 4^{1024} - 1 .

The intended product is probably ( 2 + 1 ) ( 2 2 + 1 ) ( 2 4 + 1 ) ( 2 8 + 1 ) ( 2 2 10 + 1 ) , (2 + 1)(2^2 + 1)(2^4 + 1)(2^8 + 1) \dotsm (2^{2^{10}} + 1), because ( 2 + 1 ) ( 2 2 + 1 ) ( 2 4 + 1 ) ( 2 8 + 1 ) ( 2 2 10 + 1 ) = ( 2 1 ) ( 2 + 1 ) ( 2 2 + 1 ) ( 2 4 + 1 ) ( 2 8 + 1 ) ( 2 2 10 + 1 ) = ( 2 2 1 ) ( 2 2 + 1 ) ( 2 4 + 1 ) ( 2 8 + 1 ) ( 2 2 10 + 1 ) = ( 2 4 1 ) ( 2 4 + 1 ) ( 2 8 + 1 ) ( 2 2 10 + 1 ) = = ( 2 2 10 1 ) ( 2 2 10 + 1 ) = 2 2 11 1 = 4 2 10 1. \begin{aligned} &(2 + 1)(2^2 + 1)(2^4 + 1)(2^8 + 1) \dotsm (2^{2^{10}} + 1) \\ &= (2 - 1)(2 + 1)(2^2 + 1)(2^4 + 1)(2^8 + 1) \dotsm (2^{2^{10}} + 1) \\ &= (2^2 - 1)(2^2 + 1)(2^4 + 1)(2^8 + 1) \dotsm (2^{2^{10}} + 1) \\ &= (2^4 - 1)(2^4 + 1)(2^8 + 1) \dotsm (2^{2^{10}} + 1) \\ &= \dotsb \\ &= (2^{2^{10}} - 1)(2^{2^{10}} + 1) \\ &= 2^{2^{11}} - 1 \\ &= 4^{2^{10}} - 1. \end{aligned}

Jon Haussmann - 7 years, 1 month ago

Log in to reply

You're right.

Pieter-Jan Meuris - 7 years, 1 month ago

It should begin at k=0.

Hwang seung hwan - 7 years ago

0 pending reports

×

Problem Loading...

Note Loading...

Set Loading...