103 trigonometric problems from

Algebra Level 4

Let x , y x,y and z z be positive numbers satisfying x + y + z = x y z x+y+z=xyz .

If the maximum value of cyclic x 1 + x 2 \displaystyle \sum_\text{cyclic} \dfrac x{\sqrt{1+x^2}} can be expressed as a b c \dfrac {a\sqrt b}c , where a , b a,b and c c are positive integers with a , c a,c coprime and b b square-free, find a + b + c a+b+c .


The answer is 8.

This section requires Javascript.
You are seeing this because something didn't load right. We suggest you, (a) try refreshing the page, (b) enabling javascript if it is disabled on your browser and, finally, (c) loading the non-javascript version of this page . We're sorry about the hassle.

3 solutions

Reynan Henry
Jan 13, 2017

this is similar with my problem

Chew-Seong Cheong
Jan 12, 2017

Let x = tan A x=\tan A , y = tan B y=\tan B and z = tan C z = \tan C . Then, x + y + z = x y z x+y+z=xyz \implies tan A + tan B + tan C = tan A tan B tan C \tan A + \tan B + \tan C = \tan A \tan B \tan C . This means that A A , B B and C C are the angles of a triangle. Then, we have:

S = c y c x 1 + x 2 = c y c tan A 1 + tan 2 A = c y c tan A sec 2 A = c y c tan A sec A = c y c sin A cos A cos A = c y c sin A \begin{aligned} S & = \sum_{cyc} \frac x{\sqrt{1+x^2}} = \sum_{cyc} \frac {\tan A}{\sqrt{1+\tan^2 A}} = \sum_{cyc} \frac {\tan A}{\sqrt{\sec^2 A}} \\ & = \sum_{cyc} \frac {\tan A}{\sec A} = \sum_{cyc} \frac {\sin A}{\cos A}\cdot \cos A = \sum_{cyc} \sin A \end{aligned}

S = sin A + sin B + sin C = sin A + sin B + sin ( 18 0 ( A + B ) ) = sin A + sin B + sin ( A + B ) \begin{aligned} \implies S & = \sin A + \sin B + \sin C \\ & = \sin A + \sin B + \sin (180^\circ - (A+B)) \\ & = \sin A + \sin B + \sin (A+B) \end{aligned}

For a fixed A A , the S S is maximum when:

S B = 0 B ( sin A + sin B + sin ( A + B ) ) = 0 cos B + cos ( A + B ) = 0 cos B = cos ( A + B ) = cos ( 18 0 A B ) B = 18 0 A B B = 9 0 A 2 S m a x ( A ) = sin A + sin ( 9 0 A 2 ) + sin ( A + 9 0 A 2 ) = sin A + 2 cos A 2 \begin{aligned} \frac {\partial S}{\partial B} & = 0 \\ \dfrac \partial{\partial B} (\sin A + \sin B + \sin (A+B)) & = 0 \\ \cos B + \cos (A+B) & = 0 \\ \cos B & = - \cos (A+B) = \cos (180^\circ - A - B) \\ \implies B & = 180^\circ - A - B \\ \implies B & = 90^\circ - \frac A2 \\ \implies S_{max}(A) & = \sin A + \sin \left(90^\circ - \frac A2 \right) + \sin \left(A + 90^\circ - \frac A2 \right) \\ & = \sin A + 2 \cos \frac A2 \end{aligned}

And S S is maximum when:

S m a x ( A ) A = 0 A ( sin A + 2 cos A 2 ) = 0 cos A sin A 2 = 0 cos A = sin A 2 A = 6 0 B = 9 0 6 0 2 = 6 0 C = 6 0 \begin{aligned} \frac {\partial S_{max}(A)}{\partial A} & = 0 \\ \frac \partial{\partial A} \left(\sin A + 2 \cos \frac A2 \right) & = 0 \\ \cos A - \sin \frac A2 & = 0 \\ \cos A & = \sin \frac A2 \\ \implies A & = 60^\circ \\ \implies B & = 90^\circ - \frac {60^\circ}2 = 60^\circ \\ \implies C & = 60^\circ \end{aligned}

S m a x = 3 sin 6 0 = 3 3 2 \implies S_{max} = 3\sin 60^\circ = \dfrac {3\sqrt 3}2

a + b + c = 3 + 3 + 2 = 8 \implies a+b+c = 3+3+2 = \boxed{8}

Let x = t a n ( A ) , y = t a n ( B ) , z = t a n ( C ) x=tan(A) , y=tan(B) , z=tan(C) .Then given condition reduces to t a n ( A ) + t a n ( B ) + t a n ( C ) = t a n ( A ) t a n ( B ) t a n ( C ) tan(A)+tan(B)+tan(C)=tan(A)tan(B)tan(C) .

This is true if A,B,C are angles of a triangle (or more generally, their sum is an integral multiple of π \pi .)

So we need to maximize s i n ( A ) + s i n ( B ) + s i n ( C ) sin(A)+sin(B)+sin(C) which turns out to be if all angles are π 3 \frac{\pi}{3} or the triangle is equilateral.

Thus the maximum value is 3 3 2 \frac{3\sqrt{3}}{2} which means a + b + c = 8 a+b+c=8

0 pending reports

×

Problem Loading...

Note Loading...

Set Loading...