104th Problem 2016

Algebra Level 2

Solve the quadratic equation:

4 x 2 + 8 x + 8 = 4 { 4x }^{ 2 }+8x+8=4


Check out the set: 2016 Problems .
x = 1 only x=-1 \text{ only} x = ± 1 x=\pm 1 x = ± 1 2 x=\pm \frac { 1 }{ 2} x = 1 2 only x=- \frac { 1 }{ 2} \text{ only}

This section requires Javascript.
You are seeing this because something didn't load right. We suggest you, (a) try refreshing the page, (b) enabling javascript if it is disabled on your browser and, finally, (c) loading the non-javascript version of this page . We're sorry about the hassle.

4 solutions

Pham Khanh
Apr 24, 2016

4 x 2 + 8 x + 8 = 4 4x^{2}+8x+8=4 4 ( x 2 + 2 x + 2 ) = 4 \iff 4(x^{2}+2x+2)=4 x 2 + 2 x + 2 = 4 4 = 1 \iff x^{2}+2x+2=\frac{4}{4}=1 ( x 2 + 2 x + 1 ) + 1 = 1 \iff (x^{2}+2x+1)+1=1 ( x + 1 ) 2 + 1 = 1 \iff (x+1)^{2}+1=1 ( x + 1 ) 2 = 1 1 = 0 \iff (x+1)^{2}=1-1=0 Because ( x + 1 ) 2 = 0 (x+1)^2=0 , so x + 1 = ± 0 x+1=\pm 0 On the other hand, 0 = 0 -0=0 , so x + 1 = 0 x+1=0 x = 1 o n l y \boxed{x=-1~only}

Moderator note:

Simple standard approach.

Munem Shahriar
Jul 27, 2017

4 x 2 + 8 x + 8 = 4 4x^2 +8x + 8 = 4

4 x 2 + 8 x + 4 = 0 \Rightarrow 4x^2 + 8x +4 = 0

Solve it with the quadratic formula :

  • For a quadratic equation of the form a x 2 + b x + c = 0 ax^2 + bx + c = 0 the solutions are x 1 , 2 = b ± b 2 4 a c 2 a x_1, _2 = \dfrac { -b \pm \sqrt {b^2 - 4ac} } {2a}

Now, applying the formula.

For a = 4 , b = 8 , c = 4 a = 4, b= 8, c = 4

x 1 , 2 = 8 ± 8 2 4 × 4 × 4 2 × 4 x_1, _2 = \dfrac {-8 \pm \sqrt {8^2 - 4 \times 4 \times 4} } { 2 \times 4}

Since, 8 2 4 × 4 × 4 = 0 8^2 - 4 \times 4 \times4 = 0

x = 8 2 × 4 x = \dfrac{-8}{2 \times 4}

= 8 8 = \dfrac{-8}{-8}

= 8 8 = - \dfrac{8}{8}

= 1 = \boxed{-1}

. .
May 16, 2021

4 x 2 + 8 x + 4 = 0 x 2 + 2 x + 1 = 0 ( x + 1 ) 2 = 0 x + 1 = 0 x = 1 4x ^ { 2 } + 8x + 4 = 0 \Rightarrow x ^ { 2 } + 2x + 1 = 0 \Rightarrow ( x + 1 ) ^ { 2 } = 0 \Rightarrow x + 1 = 0 \Rightarrow x = -1 .

Lew Sterling Jr
May 21, 2019

4 x 2 + 8 x + 8 = 4 4 x 2 + 8 x + 8 4 = 4 4 4 x 2 + 8 x + 4 = 0 4 ( x 2 + 2 x + 1 ) = 0 4 ( x 2 + x + x + 1 ) = 0 4 ( ( x 2 + x ) + ( x + 1 ) ) = 0 4 ( x ( x + 1 ) + 1 ( x + 1 ) ) = 0 4 ( x + 1 ) ( x + 1 ) = 0 4 ( x + 1 ) 2 = 0 4 = 0 x + 1 = 0 4 0 x + 1 1 = 0 1 x = 1 \begin{matrix} &4x^2+8x+8=4&\\ &4x^2+8x+8-4=4-4&\\ &4x^2+8x+4=0&\\ &4(x^2+2x+1)=0&\\ &4(x^2+x+x+1)=0&\\ &4(\left(x^2+x\right)+\left(x+1\right))=0&\\ &4(x\left(x+1\right)+1\left(x+1\right))=0&\\ &4\left(x+1\right)\left(x+1\right)=0&\\ &4\left(x+1\right)^2=0&\\ 4=0&&x+1=0\\ 4\neq 0&&x+1-1=0-1\\ &&\mathbf{x=-1}\\ \end{matrix}

0 pending reports

×

Problem Loading...

Note Loading...

Set Loading...