11 and 13

Algebra Level 3

A = 11 13 + 1111 1313 + 111111 131313 + + 1111 1111 Number of 11 = 13 1313 1313 Number of 13 = 13 A = \dfrac{11}{13}+\dfrac{1111}{1313}+\dfrac{111111}{131313}+\dots+\dfrac{\overbrace{1111\dots1111}^{\text{Number of 11}=13}}{\underbrace{1313\dots1313}_{\text{Number of 13}=13}}

Find the value of A A .


The answer is 11.

This section requires Javascript.
You are seeing this because something didn't load right. We suggest you, (a) try refreshing the page, (b) enabling javascript if it is disabled on your browser and, finally, (c) loading the non-javascript version of this page . We're sorry about the hassle.

3 solutions

Chew-Seong Cheong
Jul 13, 2017

A = 11 13 + 1111 1313 + 111111 131313 + + 1111...1111 # of 11 = 13 1313...1313 # of 13 = 13 = 11 13 ( 1 + 101 101 + 10101 10101 + + 1010...1010 # of 10 = 13 1010...1010 # of 10 = 13 ) = 11 13 ( 1 + 1 + 1 + + 1 # of 1 = 13 ) = 11 13 × 13 = 11 \begin{aligned} A & = \frac {11}{13} + \frac {1111}{1313} + \frac {111111}{131313} + \cdots + \frac {\overbrace{1111...1111}^{\text{\# of 11 = 13}}}{\underbrace{1313...1313}_{\text{\# of 13 = 13}}} \\ & = \frac {11}{13} \left(1 + \frac {101}{101} + \frac {10101}{10101} + \cdots + \frac {\overbrace{1010...1010}^{\text{\# of 10 = 13}}}{\underbrace{1010...1010}_{\text{\# of 10 = 13}}} \right) \\ & = \frac {11}{13} \left(\underbrace{1+1+1+\cdots + 1}_{\text{\# of 1 = 13}} \right) \\ & = \frac {11}{13}\times 13 = \boxed{11} \end{aligned}

Áron Bán-Szabó
Jul 13, 2017

Note that 1111 1313 = 11 101 13 101 = 11 13 111111 131313 = 11 10101 13 10101 = 11 13 11111111 13131313 = 11 1010101 13 1010101 = 11 13 \begin{aligned} \dfrac{1111}{1313}=\dfrac{11*101}{13*101} & = \dfrac{11}{13} \\ \ \\ \dfrac{111111}{131313}=\dfrac{11*10101}{13*10101} & = \dfrac{11}{13} \\ \ \\ \dfrac{11111111}{13131313}=\dfrac{11*1010101}{13*1010101} & = \dfrac{11}{13} \\ \dots \end{aligned} Therefore A = 13 11 13 = 11 A=13*\dfrac{11}{13}=\boxed{11}

Tom Engelsman
Nov 27, 2020

This series can be written as:

A = Σ p = 0 12 11 Σ q = 0 p 10 0 q 13 Σ q = 0 p 10 0 q = 11 13 Σ p = 0 12 Σ q = 0 p 10 0 q Σ q = 0 p 10 0 q = 11 13 Σ p = 0 12 1 = 11 13 13 = 11 . A = \large \Sigma_{p=0}^{12} \frac{11 \cdot \Sigma_{q=0}^{p} 100^q}{ 13 \cdot \Sigma_{q=0}^{p} 100^q} = \frac{11}{13} \Sigma_{p=0}^{12} \frac{\Sigma_{q=0}^{p} 100^q}{ \Sigma_{q=0}^{p} 100^q} = \frac{11}{13} \Sigma_{p=0}^{12} 1 = \frac{11}{13} \cdot 13 = \boxed{11}.

0 pending reports

×

Problem Loading...

Note Loading...

Set Loading...