x y + 3 x 3 + y 3 = 2 0 0 7 If n ordered pairs ( x , y ) of integers satisfying the equation above. If the set of all such pairs are { ( x 1 , y 1 ) , ( x 2 , y 2 ) , … , ( x n , y n ) } , then find the value of:
i = 1 ∑ n ( x i + y i ) = ?
This section requires Javascript.
You are seeing this because something didn't load right. We suggest you, (a) try
refreshing the page, (b) enabling javascript if it is disabled on your browser and,
finally, (c)
loading the
non-javascript version of this page
. We're sorry about the hassle.
This solution is similar to the solution in mathematical treasures by titu andreescu.
Since 6 0 2 1 = x 3 + y 3 + 3 x y = ( x + y ) 3 − 3 x y ( x + y ) + 3 x y we see that x + y is divisible by 3 . But then 3 x y = 6 0 2 1 + 3 x y ( x + y ) − ( x + y ) 3 is divisible by 9 , and so 3 divides x y . Thus both x and y are divisible by 3 , and so x = 3 X , y = 3 Y where 6 0 2 1 2 7 X Y = 2 7 ( X + Y ) 3 − 8 1 X Y ( X + Y ) + 2 7 X Y = 3 ( X + Y ) − 1 2 7 ( X + Y ) 3 − 6 0 2 1 = 9 ( X + Y ) 2 + 3 ( X + Y ) + 1 − 3 ( X + Y ) − 1 6 0 2 0 so we deduce that 3 ( X + Y ) − 1 divides 6 0 2 0 . Possible values of X + Y , and therefore X Y , are thus
X + Y − 1 0 0 3 − 5 7 − 3 1 1 2 2 0 1 X Y 3 3 5 2 2 5 1 0 7 8 2 5 − 1 1 1 4 3 1 3 4 8 9 X + Y − 4 0 1 − 2 3 − 2 2 2 9 2 8 7 X Y 5 3 5 5 6 1 7 7 3 3 − 4 3 2 8 1 2 7 4 8 8 X + Y − 1 4 3 − 1 4 − 1 5 4 7 5 0 2 X Y 6 8 0 1 6 9 5 6 − 7 7 4 0 8 4 0 5 7 X + Y − 1 0 0 − 9 0 7 7 2 2 0 0 7 X Y 3 3 2 3 3 4 2 2 3 6 1 7 3 5 1 3 4 2 9 0 6 Of these, only the pair X + Y = 7 , X Y = 6 correspond to integer solutions X , Y = 1 , 6 . Thus the only solutions to the equation are ( x 1 , y 1 ) = ( 1 8 , 3 ) and ( x 2 , y 2 ) = ( 3 , 1 8 ) , which makes the answer 4 2 .
Couldn't you already use 3 x y = 6 0 2 1 + 3 x y ( x + y ) − ( x + y ) 3 to get 3 x y = ( ( x + y ) 2 + ( x + y ) + 1 ) − ( x + y ) − 1 6 0 2 0 which leads to x + y − 1 ∣ 6 0 2 0 ?
Your method of solving this is similar to finding a factorization ( x + y − 1 ) ( x 2 − x y + y 2 + x + y + 1 ) = 6 0 2 0
which simplifies the problem of solving x 3 + 3 x y + y 3 = 6 0 2 1 to factoring the left hand side of x 3 + 3 x y + y 3 + C = 6 0 2 1 + C for some constant C which again is a common method of solving diophantine equations.
Log in to reply
Oh and here the factorization is actually quite trivial, remember the identity x 3 + y 3 + z 3 − 3 x y z = ( x + y + z ) ( x 2 + y 2 + z 2 − x y − y z − z x ) , now it is easy to see that by choosing z = − 1 we get x 3 + y 3 − 1 + 3 x y = ( x + y − 1 ) ( x 2 + y 2 + 1 − x y + y + x )
In general we could look for a possible linear factor ( a x + b y + c ) to the polynomial and if that fails, quadratic, and so on with multiple variables also.
Yes you could fact this way. It was interesting, nonetheless, to note that both x and y had to be multiples of 3 .
Problem Loading...
Note Loading...
Set Loading...
We use the factorisation x 3 + y 3 + z 3 − 3 x y z = ( x + y + z ) ( x 2 + y 2 + z 2 − x y − y z − z x ) .
3 x 3 + y 3 + x y x 3 + y 3 + 3 x y x 3 + y 3 + ( − 1 ) 3 − 3 x y ( − 1 ) ( x + y − 1 ) ( x 2 + y 2 + 1 − x y + x + y ) ( x + y − 1 ) ( ( x + y − 1 ) 2 − 3 x y − 3 x − 3 y ) = 2 0 0 7 = 6 0 2 1 = 6 0 2 0 = 6 0 2 0 = 2 2 × 5 × 7 × 4 3
Since the RHS ≡ 2 ( m o d 3 ) , the LHS must also be ≡ 2 ( m o d 3 ) . Thus, we must have x + y − 1 ≡ 2 ( m o d 3 ) . All positive factors of 6020 that are equivalent to 2 ( m o d 3 ) are 2 , 5 , 1 4 , 2 0 , 3 5 , 8 6 , 1 4 0 , 2 1 5 , 6 0 2 , 8 6 0 , 1 5 0 5 and 6 0 2 0 . By observation, we get that only x + y − 1 = 2 0 satisfies, with x = 1 8 , y = 3 or vice-versa. Thus, x + y = 2 1 , but since we're looking for ordered pairs, the answer is 4 2 .