"When I was 4"

x y + x 3 + y 3 3 = 2007 \large{xy+\frac{x^3+y^3}{3}=2007} If n n ordered pairs ( x , y ) (x,y) of integers satisfying the equation above. If the set of all such pairs are { ( x 1 , y 1 ) , ( x 2 , y 2 ) , , ( x n , y n ) } \{ (x_1, y_1), (x_2, y_2), \ldots , (x_n, y_n) \} , then find the value of:

i = 1 n ( x i + y i ) = ? \large{\sum_{i=1}^n (x_i + y_i) = \ ? }


The answer is 42.

This section requires Javascript.
You are seeing this because something didn't load right. We suggest you, (a) try refreshing the page, (b) enabling javascript if it is disabled on your browser and, finally, (c) loading the non-javascript version of this page . We're sorry about the hassle.

2 solutions

Sharky Kesa
Aug 14, 2018

We use the factorisation x 3 + y 3 + z 3 3 x y z = ( x + y + z ) ( x 2 + y 2 + z 2 x y y z z x ) x^3+y^3+z^3-3xyz=(x+y+z)(x^2+y^2+z^2-xy-yz-zx) .

x 3 + y 3 3 + x y = 2007 x 3 + y 3 + 3 x y = 6021 x 3 + y 3 + ( 1 ) 3 3 x y ( 1 ) = 6020 ( x + y 1 ) ( x 2 + y 2 + 1 x y + x + y ) = 6020 ( x + y 1 ) ( ( x + y 1 ) 2 3 x y 3 x 3 y ) = 2 2 × 5 × 7 × 43 \begin{aligned} \dfrac{x^3+y^3}{3} +xy &= 2007\\ x^3+y^3+3xy &= 6021\\ x^3+y^3+(-1)^3 - 3xy(-1) &= 6020\\ (x+y-1)(x^2+y^2+1-xy+x+y) &= 6020\\ (x+y-1)((x+y-1)^2 - 3xy - 3x - 3y) &= 2^2 \times 5 \times 7 \times 43 \end{aligned}

Since the RHS 2 ( m o d 3 ) \equiv 2 \pmod{3} , the LHS must also be 2 ( m o d 3 ) \equiv 2 \pmod{3} . Thus, we must have x + y 1 2 ( m o d 3 ) x+y-1 \equiv 2 \pmod{3} . All positive factors of 6020 that are equivalent to 2 ( m o d 3 ) 2 \pmod{3} are 2 2 , 5 5 , 14 14 , 20 20 , 35 35 , 86 86 , 140 140 , 215 215 , 602 602 , 860 860 , 1505 1505 and 6020 6020 . By observation, we get that only x + y 1 = 20 x+y-1=20 satisfies, with x = 18 x=18 , y = 3 y=3 or vice-versa. Thus, x + y = 21 x+y=21 , but since we're looking for ordered pairs, the answer is 42 \boxed{42} .

This solution is similar to the solution in mathematical treasures by titu andreescu.

Hans Gabriel Daduya - 2 years, 9 months ago
Mark Hennings
Aug 11, 2018

Since 6021 = x 3 + y 3 + 3 x y = ( x + y ) 3 3 x y ( x + y ) + 3 x y 6021 =x^3 + y^3 + 3xy = (x+y)^3 - 3xy(x+y) + 3xy we see that x + y x+y is divisible by 3 3 . But then 3 x y = 6021 + 3 x y ( x + y ) ( x + y ) 3 3xy = 6021 + 3xy(x+y) - (x+y)^3 is divisible by 9 9 , and so 3 3 divides x y xy . Thus both x x and y y are divisible by 3 3 , and so x = 3 X x=3X , y = 3 Y y=3Y where 6021 = 27 ( X + Y ) 3 81 X Y ( X + Y ) + 27 X Y 27 X Y = 27 ( X + Y ) 3 6021 3 ( X + Y ) 1 = 9 ( X + Y ) 2 + 3 ( X + Y ) + 1 6020 3 ( X + Y ) 1 \begin{aligned} 6021 & = \; 27(X+Y)^3 - 81XY(X+Y) + 27XY \\ 27XY & = \; \frac{27(X+Y)^3 - 6021}{3(X+Y) - 1} \; = \; 9(X+Y)^2 + 3(X+Y) + 1 - \frac{6020}{3(X+Y)-1} \end{aligned} so we deduce that 3 ( X + Y ) 1 3(X+Y)-1 divides 6020 6020 . Possible values of X + Y X+Y , and therefore X Y XY , are thus

X + Y X Y X + Y X Y X + Y X Y X + Y X Y 1003 335225 401 53556 143 6801 100 3323 57 1078 23 177 14 69 9 34 3 25 2 33 1 56 0 223 1 111 2 43 5 7 7 6 12 43 29 281 47 740 72 1735 201 13489 287 27488 502 84057 2007 1342906 \begin{array}{|c|c|c|c|c|c|c|c|} \hline X+Y & XY & X+Y & XY & X+Y & XY & X+Y & XY \\ \hline -1003 & 335225 & -401 & 53556 & -143 & 6801 & -100 & 3323 \\ -57 & 1078 & -23 & 177 & -14 & 69 & -9 & 34 \\ -3 & 25 & -2 & 33 & -1 & 56 & 0 & 223 \\ 1 & -111 & 2 & -43 & 5 & -7 & 7 & 6 \\ 12 & 43 &29 & 281 & 47 & 740 & 72 & 1735 \\ 201 & 13489 & 287 & 27488 & 502 & 84057 & 2007 & 1342906 \\ \hline \end{array} Of these, only the pair X + Y = 7 X+Y=7 , X Y = 6 XY= 6 correspond to integer solutions X , Y = 1 , 6 X,Y = 1,6 . Thus the only solutions to the equation are ( x 1 , y 1 ) = ( 18 , 3 ) (x_1,y_1) = (18,3) and ( x 2 , y 2 ) = ( 3 , 18 ) (x_2,y_2) = (3,18) , which makes the answer 42 \boxed{42} .

Couldn't you already use 3 x y = 6021 + 3 x y ( x + y ) ( x + y ) 3 3xy = 6021 + 3xy(x+y) - (x+y)^3 to get 3 x y = ( ( x + y ) 2 + ( x + y ) + 1 ) 6020 ( x + y ) 1 3xy = ((x+y)^2 + (x + y) + 1) - \dfrac{6020}{ (x + y) - 1 } which leads to x + y 1 6020 x + y - 1 \mid 6020 ?

Your method of solving this is similar to finding a factorization ( x + y 1 ) ( x 2 x y + y 2 + x + y + 1 ) = 6020 (x + y - 1)(x^2 - xy + y^2 + x + y + 1) = 6020

which simplifies the problem of solving x 3 + 3 x y + y 3 = 6021 x^3 + 3xy + y^3 = 6021 to factoring the left hand side of x 3 + 3 x y + y 3 + C = 6021 + C x^3 + 3xy + y^3 + C = 6021 + C for some constant C C which again is a common method of solving diophantine equations.

Jesse Nieminen - 2 years, 10 months ago

Log in to reply

Oh and here the factorization is actually quite trivial, remember the identity x 3 + y 3 + z 3 3 x y z = ( x + y + z ) ( x 2 + y 2 + z 2 x y y z z x ) x^3 + y^3 + z^3 - 3xyz = (x + y + z)(x^2 + y^2 + z^2 - xy - yz - zx) , now it is easy to see that by choosing z = 1 z = -1 we get x 3 + y 3 1 + 3 x y = ( x + y 1 ) ( x 2 + y 2 + 1 x y + y + x ) x^3 + y^3 - 1 + 3xy = (x + y - 1)(x^2 + y^2 + 1 - xy + y + x)

In general we could look for a possible linear factor ( a x + b y + c ) (ax + by + c) to the polynomial and if that fails, quadratic, and so on with multiple variables also.

Jesse Nieminen - 2 years, 10 months ago

Yes you could fact this way. It was interesting, nonetheless, to note that both x x and y y had to be multiples of 3 3 .

Mark Hennings - 2 years, 10 months ago

0 pending reports

×

Problem Loading...

Note Loading...

Set Loading...