11's remainders

Let S 1 = n = 6 10 ( 2 n + 1 ) n 5 \displaystyle S_1=\sum_{n=6}^{10} (2n+1)^{n-5} and S 2 = n = 6 10 ( 2 n ) n 5 \displaystyle S_2=\sum_{n=6}^{10} (2n)^{n-5} .

When S 1 S_1 and S 2 S_2 are divided by 11, they leave remainders a a and b b respectively.

Find the remainder when a 4 b 4 a^4b^4 is divided by 11.

7 6 2 10 1 5 8

This section requires Javascript.
You are seeing this because something didn't load right. We suggest you, (a) try refreshing the page, (b) enabling javascript if it is disabled on your browser and, finally, (c) loading the non-javascript version of this page . We're sorry about the hassle.

1 solution

Chew-Seong Cheong
May 23, 2016

S 1 = n = 6 10 ( 2 n + 1 ) n 5 = n = 1 5 ( 2 n + 11 ) n S 1 n = 1 5 ( 2 n ) n ( m o d 11 ) ( 2 1 + 4 2 + 6 3 + 8 4 + 1 0 5 ) ( m o d 11 ) ( 2 + 5 + ( 5 ) 3 + ( 3 ) 4 + ( 1 ) 5 ) ( m o d 11 ) ( 2 + 5 4 + 4 1 ) ( m o d 11 ) 6 ( m o d 11 ) \begin{aligned} S_1 & = \sum_{n=6}^{10} (2n+1)^{n-5} \\ & = \sum_{n=1}^5 (2n+11)^n \\ \implies S_1 & \equiv \sum_{n=1}^5 (2n)^n \pmod {11} \\ & \equiv (2^1+4^2+6^3+8^4+10^5) \pmod {11} \\ & \equiv (2+5+(-5)^3+(-3)^4+(-1)^5) \pmod {11} \\ & \equiv (2+5-4+4-1) \pmod {11} \\ & \equiv 6 \pmod {11} \end{aligned}

S 2 = n = 6 10 ( 2 n ) n 5 = n = 1 5 ( 2 n + 10 ) n S 2 n = 1 5 ( 2 n 1 ) n ( m o d 11 ) ( 1 1 + 3 2 + 5 3 + 7 4 + 9 5 ) ( m o d 11 ) ( 1 + 9 + 4 + ( 4 ) 4 + ( 2 ) 5 ) ( m o d 11 ) ( 1 + 9 + 4 + 3 10 ) ( m o d 11 ) 7 ( m o d 11 ) \begin{aligned} S_2 & = \sum_{n=6}^{10} (2n)^{n-5} \\ & = \sum_{n=1}^5 (2n+10)^n \\ \implies S_2 & \equiv \sum_{n=1}^5 (2n-1)^n \pmod {11} \\ & \equiv (1^1+3^2+5^3+7^4+9^5) \pmod {11} \\ & \equiv (1+9+4+(-4)^4+(-2)^5) \pmod {11} \\ & \equiv (1+9+4+3-10) \pmod {11} \\ & \equiv 7 \pmod {11} \end{aligned}

Therefore, we have:

a 4 b 4 6 4 7 4 ( m o d 11 ) 4 2 4 ( m o d 11 ) ( 2 ) 4 ( m o d 11 ) 5 ( m o d 11 ) \begin{aligned} a^4b^4 & \equiv 6^47^4 \pmod{11} \\ & \equiv 42^4 \pmod{11} \\ & \equiv (-2)^4 \pmod{11} \\ & \equiv \boxed{5} \pmod{11} \end{aligned}

0 pending reports

×

Problem Loading...

Note Loading...

Set Loading...