12 circles

Geometry Level 5

We have triangle A B C ABC witn O O - circumceter. We have 12 circles tangent the lines A B AB , A C AC , C B CB , A O AO , B O BO , C O CO - 6 circles are inside triangle A B C ABC with radius r 1 , r 2 , r 3 , r 4 , r 5 , r 6 r_1,r_2,r_3,r_4,r_5,r_6 and 6 circles are outside triangle A B C ABC with radius R 1 , R 2 , R 3 , R 4 , R 5 , R 6 R_1,R_2,R_3,R_4,R_5,R_6 .

Proof \newline 1. 1 r 1 + 1 r 3 + 1 r 5 = 1 r 2 + 1 r 4 + 1 r 6 \hspace{28pt} 1. \Large \frac{1}{r_1}+\frac{1}{r_3}+\frac{1}{r_5}=\frac{1}{r_2}+\frac{1}{r_4}+\frac{1}{r_6} \newline 2. 1 R 1 + 1 R 3 + 1 R 5 = 1 R 2 + 1 R 4 + 1 R 6 \hspace{28pt} 2.\Large \frac{1}{R_1}+\frac{1}{R_3}+\frac{1}{R_5}=\frac{1}{R_2}+\frac{1}{R_4}+\frac{1}{R_6}

Find value A A

A = 1 r 1 + 1 r 3 + 1 r 5 1 R 1 + 1 R 3 + 1 R 5 \hspace{50pt} A=\LARGE \frac{\frac{1}{r_1}+\frac{1}{r_3}+\frac{1}{r_5}}{\frac{1}{R_1}+\frac{1}{R_3}+\frac{1}{R_5}}

Firth part problem give Stanley Rabinowitz for internal circles here .

Update. David Vreken send the message that this problem is not correct. And problem to reform. Find the value of the integer part of A A .


The answer is 3.

This section requires Javascript.
You are seeing this because something didn't load right. We suggest you, (a) try refreshing the page, (b) enabling javascript if it is disabled on your browser and, finally, (c) loading the non-javascript version of this page . We're sorry about the hassle.

1 solution

David Vreken
Jun 28, 2019

The shortcut for this question is to start with an equilateral triangle and calculate r 1 = r 3 = r 5 = 3 1 4 r r_1 = r_3 = r_5 = \frac{\sqrt{3 - 1}}{4}r (for r = A O r = AO ) and R 1 = R 3 = R 5 = 3 3 1 4 r R_1 = R_3 = R_5 = \frac{3\sqrt{3 - 1}}{4}r . Then that would mean 1 r 1 + 1 r 3 + 1 r 5 1 R 1 + 1 R 3 + 1 R 5 = 3 \frac{\frac{1}{r_1} + \frac{1}{r_3} + \frac{1}{r_5}}{\frac{1}{R_1} + \frac{1}{R_3} + \frac{1}{R_5}} = \boxed{3} .


For a more general solution for other triangles, let A A' be the intersection of A O AO and B C BC , B B' be the intersection of B O BO and A C AC , and C C' be the intersection of C O CO and A B AB . Let r = A O = B O = C O r = AO = BO = CO .

Since an inscribed angle is half of a central angle that subtends the same arc, B O C = 2 A \angle BOC = 2A , so B O C = C O B = 180 ° 2 A \angle BOC' = \angle COB' = 180° - 2A (from the straight line), C B O = B C O = 90 ° A \angle CBO = \angle BCO = 90° - A (from the isosceles triangle B O C \triangle BOC ), and B C = 2 r sin A BC = 2r \sin A (from a circle chord). Similarly, A O C = C O A = 180 ° 2 B \angle AOC' = \angle COA' = 180° - 2B and A O B = B O A = 180 ° 2 C \angle AOB' = \angle BOA' = 180° - 2C , A C O = C A O = 90 ° B \angle ACO = \angle CAO = 90° - B and A B O = B A O = 90 ° C \angle ABO = \angle BAO = 90° - C , and A B = 2 r sin C AB = 2r \sin C and A C = 2 r sin B AC = 2r \sin B .

Using the law of sines on B O A \triangle BOA' gives O A = r cos A cos ( B C ) OA' = \frac{r \cos A}{\cos (B - C)} and B A = r sin 2 C cos ( B C ) BA' = \frac{r \sin 2C}{\cos(B - C)} . Similarly, O B = r cos B cos ( A C ) OB' = \frac{r \cos B}{\cos (A - C)} and O C = r cos C cos ( A B ) OC' = \frac{r \cos C}{\cos (A - B)} , and C A = r sin 2 B cos ( B C ) CA' = \frac{r \sin 2B}{\cos(B - C)} , C B = r sin 2 A cos ( A C ) CB' = \frac{r \sin 2A}{\cos(A - C)} , A B = r sin 2 C cos ( A C ) AB' = \frac{r \sin 2C}{\cos(A - C)} , A C = r sin 2 B cos ( A B ) AC' = \frac{r \sin 2B}{\cos(A - B)} , and B C = r sin 2 A cos ( A B ) BC' = \frac{r \sin 2A}{\cos(A - B)} .

Since the radius r r of an incircle is the quotient of the area of its triangle and the semiperimeter of its triangle, r 1 = 1 2 r r sin 2 B cos ( A B ) sin ( 90 ° C ) 1 2 ( r + r sin 2 B cos ( A B ) + r cos C cos ( A B ) ) = r cos A cos B cos C cos A sin A + cos A cos B r_1 = \frac{\frac{1}{2} \cdot r \cdot \frac{r\sin 2B}{\cos(A - B)} \cdot \sin(90° - C)}{\frac{1}{2}(r + \frac{r\sin 2B}{\cos(A - B)} + \frac{r\cos C}{\cos(A - B)})} = \frac{r \cos A \cos B \cos C}{\cos A \sin A + \cos A \cos B} .

Similarly:

r 3 = r cos A cos B cos C cos C sin C + cos C cos A r_3 = \frac{r \cos A \cos B \cos C}{\cos C \sin C + \cos C \cos A}

r 5 = r cos A cos B cos C cos B sin B + cos B cos C r_5 = \frac{r \cos A \cos B \cos C}{\cos B \sin B + \cos B \cos C}

r 2 = r cos A cos B cos C cos A sin A + cos A cos C r_2 = \frac{r \cos A \cos B \cos C}{\cos A \sin A + \cos A \cos C}

r 4 = r cos A cos B cos C cos C sin C + cos C cos B r_4 = \frac{r \cos A \cos B \cos C}{\cos C \sin C + \cos C \cos B}

r 6 = r cos A cos B cos C cos B sin B + cos B cos A r_6 = \frac{r \cos A \cos B \cos C}{\cos B \sin B + \cos B \cos A}

Therefore,

1 r 1 + 1 r 3 + 1 r 5 = 1 r 2 + 1 r 4 + 1 r 6 = cos A sin A + cos B sin B + cos C sin C + cos A cos B + cos B cos C + cos A cos C r cos A cos B cos C \frac{1}{r_1} + \frac{1}{r_3} + \frac{1}{r_5} = \frac{1}{r_2} + \frac{1}{r_4} + \frac{1}{r_6} = \frac{\cos A \sin A + \cos B \sin B + \cos C \sin C + \cos A \cos B + \cos B \cos C + \cos A \cos C}{r \cos A \cos B \cos C}

Since the radius R R of an excircle is the quotient of the area of its triangle and the difference of the semiperimeter of its triangle and the side it is tangent to, R 1 = 1 2 2 r sin B ( r + r cos C cos ( A B ) ) sin ( 90 ° B ) 1 2 ( 2 r sin B + r + r cos C cos ( A B ) + r sin 2 B cos ( A B ) ) r sin 2 B cos ( A B ) = 2 r sin A sin B sin C cos A cos B cos C 2 sin A sin B sin C cos A cos B + sin A sin B cos A cos B sin B cos A cos B cos C sin B cos A cos 2 B R_1 = \frac{\frac{1}{2} \cdot 2r \sin B \cdot (r + \frac{r \cos C}{\cos (A - B)}) \cdot \sin(90° - B)}{\frac{1}{2}(2r \sin B + r + \frac{r \cos C}{\cos (A - B)} + \frac{r \sin 2B}{\cos (A - B)}) - \frac{r \sin 2B}{\cos (A - B)}} = \frac{2r\sin A \sin B \sin C \cos A \cos B \cos C}{2 \sin A \sin B \sin C \cos A \cos B + \sin A \sin B \cos A \cos B - \sin B \cos A \cos B \cos C - \sin B \cos A \cos^2 B} .

Similarly:

R 3 = 2 r sin A sin B sin C cos A cos B cos C 2 sin A sin B sin C cos A cos C + sin A sin C cos A cos C sin A cos A cos B cos C sin A cos C cos 2 A R_3 = \frac{2r\sin A \sin B \sin C \cos A \cos B \cos C}{2 \sin A \sin B \sin C \cos A \cos C + \sin A \sin C \cos A \cos C - \sin A \cos A \cos B \cos C - \sin A \cos C \cos^2 A}

R 5 = 2 r sin A sin B sin C cos A cos B cos C 2 sin A sin B sin C cos B cos C + sin B sin C cos B cos C sin C cos A cos B cos C sin C cos B cos 2 C R_5 = \frac{2r\sin A \sin B \sin C \cos A \cos B \cos C}{2 \sin A \sin B \sin C \cos B \cos C + \sin B \sin C \cos B \cos C - \sin C \cos A \cos B \cos C - \sin C \cos B \cos^2 C}

R 2 = 2 r sin A sin B sin C cos A cos B cos C 2 sin A sin B sin C cos A cos C + sin A sin C cos A cos C sin C cos A cos B cos C sin C cos A cos 2 C R_2 = \frac{2r\sin A \sin B \sin C \cos A \cos B \cos C}{2 \sin A \sin B \sin C \cos A \cos C + \sin A \sin C \cos A \cos C - \sin C \cos A \cos B \cos C - \sin C \cos A \cos^2 C}

R 4 = 2 r sin A sin B sin C cos A cos B cos C 2 sin A sin B sin C cos B cos C + sin B sin C cos B cos C sin B cos A cos B cos C sin B cos C cos 2 B R_4 = \frac{2r\sin A \sin B \sin C \cos A \cos B \cos C}{2 \sin A \sin B \sin C \cos B \cos C + \sin B \sin C \cos B \cos C - \sin B \cos A \cos B \cos C - \sin B \cos C \cos^2 B}

R 6 = 2 r sin A sin B sin C cos A cos B cos C 2 sin A sin B sin C cos A cos B + sin A sin B cos A cos B sin A cos A cos B cos C sin A cos B cos 2 A R_6 = \frac{2r\sin A \sin B \sin C \cos A \cos B \cos C}{2 \sin A \sin B \sin C \cos A \cos B + \sin A \sin B \cos A \cos B - \sin A \cos A \cos B \cos C - \sin A \cos B \cos^2 A}

Careful examination shows that:

1 R 1 + 1 R 3 + 1 R 5 = 1 R 2 + 1 R 4 + 1 R 6 \frac{1}{R_1} + \frac{1}{R_3} + \frac{1}{R_5} = \frac{1}{R_2} + \frac{1}{R_4} + \frac{1}{R_6}

only for acute isosceles (and equilateral) triangles, but not for scalene triangles.

Finally, using the above equations, 1 r 1 + 1 r 3 + 1 r 5 1 R 1 + 1 R 3 + 1 R 5 = 3 \frac{\frac{1}{r_1} + \frac{1}{r_3} + \frac{1}{r_5}}{\frac{1}{R_1} + \frac{1}{R_3} + \frac{1}{R_5}} = 3 for equilateral triangles, but 1 r 1 + 1 r 3 + 1 r 5 1 R 1 + 1 R 3 + 1 R 5 > 3 \frac{\frac{1}{r_1} + \frac{1}{r_3} + \frac{1}{r_5}}{\frac{1}{R_1} + \frac{1}{R_3} + \frac{1}{R_5}} > 3 for all other acute triangles. In either case, the value of the integer part is 3 \boxed{3} .

0 pending reports

×

Problem Loading...

Note Loading...

Set Loading...