1+2015 = 2016

Calculus Level 5

n = 1 1 + 201 5 n 201 6 n n 2 = π A B + ln ( C ) ln ( D ) ( ln ( C ) ) 2 \large{\displaystyle \sum^{\infty}_{n=1} \frac{1+2015^{n}}{2016^{n}n^{2}}=\frac{\pi^{A}}{B}+\ln (C) \ln(D)-(\ln(C))^2}

If the equation is true for positive integers A , B , C A,B,C and D D , find A + B + C + D A+B+C+D .


The answer is 4039.

This section requires Javascript.
You are seeing this because something didn't load right. We suggest you, (a) try refreshing the page, (b) enabling javascript if it is disabled on your browser and, finally, (c) loading the non-javascript version of this page . We're sorry about the hassle.

1 solution

n = 1 1 + 201 5 n 201 6 n n 2 = n = 1 1 201 6 n n 2 + n = 1 201 5 n 201 6 n n 2 = Li 2 ( 1 2016 ) + Li 2 ( 2015 2016 ) Li 2 ( z ) is dilogarithm function = Li 2 ( 1 2016 ) + Li 2 ( 1 1 2016 ) By Abel identity with x = y = π 2 6 ln ( 1 2016 ) ln ( 1 1 2016 ) = π 2 6 ln ( 1 2016 ) ln ( 2015 2016 ) = π 2 6 + ln 2016 ln 2015 ln 2 2016 \begin{aligned} \sum_{n=1}^\infty \frac{1+2015^n}{2016^n n^2} & = \sum_{n=1}^\infty \frac{1}{2016^n n^2} + \sum_{n=1}^\infty \frac{2015^n}{2016^n n^2} \\ & = \text{Li}_2 \left(\frac{1}{2016} \right) + \text{Li}_2 \left(\frac{2015}{2016} \right) \quad \quad \quad \quad \small \color{#3D99F6}{\text{Li}_2(z) \text{ is dilogarithm function}} \\ & = \text{Li}_2 \left(\frac{1}{2016} \right) + \text{Li}_2 \left(1 - \frac{1}{2016} \right) \quad \quad \small \color{#3D99F6}{\text{By Abel identity with } x =y} \\ & = \frac{\pi^2}{6} - \ln\left(\frac{1}{2016} \right) \ln\left(1-\frac{1}{2016} \right) \\ & = \frac{\pi^2}{6} - \ln\left(\frac{1}{2016} \right) \ln\left(\frac{2015}{2016} \right) \\ & = \frac{\pi^2}{6} + \ln 2016 \ln 2015 - \ln^2 2016 \end{aligned}

A + B + C + D = 2 + 6 + 2016 + 2015 = 4039 \Rightarrow A+B+C+D = 2 + 6 + 2016 + 2015 = \boxed{4039}

More about polylogarithm function and Abel identy .

0 pending reports

×

Problem Loading...

Note Loading...

Set Loading...