1222...² Problem

12² = 144
21² = 441
122² = 14884
221² = 48841
1222² = 1493284
2221² = 4932841

Does this property exist for all 1222... numbers?

Yes No

This section requires Javascript.
You are seeing this because something didn't load right. We suggest you, (a) try refreshing the page, (b) enabling javascript if it is disabled on your browser and, finally, (c) loading the non-javascript version of this page . We're sorry about the hassle.

2 solutions

We define ( 1 ) ( n ) (1)^{(n)} , with parenthesis at the power position, to be n n repetitions of digit 1 1 , in decimal representation. For instance ( 1 ) ( 2 ) = 11 (1)^{(2)}=11 and ( 1 ) ( 3 ) = 111 (1)^{(3)}=111 .

The numbers of the form 1222... 1222... , with n n digits in total, can be written as 1 0 n + 2 × ( 1 ) ( n 1 ) 10^n+2\times (1)^{(n-1)} . Take it to the power two to have

1 0 2 n + 4 × ( ( 1 ) ( n 1 ) ) 2 + 4 × 1 0 n × ( 1 ) ( n 1 ) ( ) 10^{2n}+4\times \big( (1)^{(n-1)} \big)^2+4\times10^n\times (1)^{(n-1)} \ (*) .

The swapped version of 1222... 1222... can be written as 10 × 2 × ( 1 ) ( n 1 ) + 1 10\times 2 \times (1)^{(n-1)}+1 . Its square is

1 0 2 × 4 × ( ( 1 ) ( n 1 ) ) 2 + 1 + 40 × ( 1 ) ( n 1 ) ( ) 10^2\times 4\times \big( (1)^{(n-1)} \big)^2+1+40 \times (1)^{(n-1)} \ (**)

In order to have the property true, we need the following to be true (the LHS is from ( * ), when the digit "1", from the beginning is dropped. the RHS is from ( ** ), when digit "1", from the end, is subtracted and the remaining is divided by 10 10 ).

4 × ( ( 1 ) ( n 1 ) ) 2 + 4 × 1 0 n × ( 1 ) ( n 1 ) = ( 1 10 ) × { 1 0 2 × 4 × ( ( 1 ) ( n 1 ) ) 2 + 40 × ( 1 ) ( n 1 ) } 4\times \big( (1)^{(n-1)} \big)^2+4\times10^n\times (1)^{(n-1)}=(\frac{1}{10})\times \{10^2\times 4\times \big( (1)^{(n-1)} \big)^2+40 \times (1)^{(n-1)}\}

the equation, above, can be simplified to

( 1 0 n 1 ) × ( 1 ) ( n 1 ) = 9 × ( ( 1 ) ( n 1 ) ) 2 (10^n-1)\times (1)^{(n-1)}=9\times ((1)^{(n-1)})^2

or

( 1 0 n 1 + + 1 ) × ( 1 ) ( n 1 ) = ( ( 1 ) ( n 1 ) ) 2 (10^{n-1}+\dots+1)\times (1)^{(n-1)}=((1)^{(n-1)})^2

which can be proven, knowing the definition of multiplication.

Ruby Hammer
Aug 30, 2018

Thing to prove:

1222…² = 1ABC… (ABC… represents a sequence of digits that are the same in both numbersl)

222…1² = ABC..1

Proof:

1222… (222.. shall represent n number of twos)

= 10ⁿ + 222…

= 10ⁿ + 2/9 * 999… (999.. also represents n number of nines)

= 10ⁿ + 2/9 * (10ⁿ - 1)

= 11/9 * 10ⁿ - 2/9

222…1

= 1 + 222…0

= 1 + 10 * 222…

= 1 + 10 * 2/9 * 999…

= 1 + 10 * 2/9 * (10ⁿ - 1)

= 20/9 * 10ⁿ - 11/9

Now we must find out how many digits the number 1222…² has.

10ⁿ < 1222… < 10ⁿ * √10

(10ⁿ)² < (1222…)² < (10ⁿ * √10)²

log10(10ⁿ)² < log10(1222…)² < log10(10ⁿ * √10)²

2n < x < 2n + 1

So the number 1222…² must have 2n digits after the 1.

For this next step we’ll call 1ABC… the variable name a.

a = 1ABC…

a = 10²ⁿ + ABC… |-10²ⁿ

a - 10²ⁿ = ABC… | *10

10 * (a - 10²ⁿ) = ABC…0 | +1

10 * (a - 10²ⁿ) + 1 = ABC…1

Now we can replace the a with 1ABC… .

10 * (1ABC… - 10²ⁿ) + 1 = ABC…1

We can now replace 1ABC… with 1222…² and replace ABC…1 with 222…1².

10 * (1222…² - 10²ⁿ) + 1 = 222…1²

For our last step we can subtitute the numbers 1222… and 222…1 with their respective definitions.

10 * ((11/9 * 10ⁿ - 2/9)² - 10²ⁿ) + 1 = (20/9 * 10ⁿ - 11/9)²

10 * (121/81 * 10²ⁿ - 44/81 * 10ⁿ + 4/81 - 10²ⁿ) + 1 = 400/81 * 10²ⁿ - 440/81 * 10ⁿ + 121/81 | *81

10 * (121 * 10²ⁿ - 44 * 10ⁿ + 4 - 81 * 10²ⁿ) + 81 = 400 * 10²ⁿ - 440 * 10ⁿ + 121

1210 * 10²ⁿ - 440 * 10ⁿ + 40 - 810 * 10²ⁿ + 81 = 400 * 10²ⁿ - 440 * 10ⁿ + 121

400 * 10²ⁿ - 440 * 10ⁿ + 121 = 400 * 10²ⁿ - 440 * 10ⁿ + 121 | -400 * 10²ⁿ + 440 * 10ⁿ - 121

0 = 0

This equation is true so our original assumtion must have also been true.

0 pending reports

×

Problem Loading...

Note Loading...

Set Loading...