1234525286

How many ordered pairs of positive integers ( x , y ) (x,y) satisfy x 2 y 2 = 1234525286 x^2-y^2= 1234525286 ?


The answer is 0.

This section requires Javascript.
You are seeing this because something didn't load right. We suggest you, (a) try refreshing the page, (b) enabling javascript if it is disabled on your browser and, finally, (c) loading the non-javascript version of this page . We're sorry about the hassle.

1 solution

Lucas Nascimento
Aug 5, 2016

Utilizando o critério da divisibilidade de um número por 4 conclui-se que 1234525286 deixa resto 2 na divisão por 4,então basta analisarmos os restos de x^2-y^2 na divisão por 4. Observe que x^2 só pode assim como y^2, deixar resto 0 ou 1 na divisão por 4,então:

x^2-y^2 só pode deixar 0,1 ou 3 como resto na divisão por 4 oque impossibilita que haja solução para a equação do problema.


Rough translation :

Using the divisibility of a number of criteria for 4 concluded that 1234525286 2 leaves a remainder when divided by 4, then simply analyzing the remainder of x 2 y 2 x ^ 2- y ^ 2 when divided by 4. Note that x 2 x ^ 2 only as y 2 y ^ 2 , let rest 0 or 1 on division by 4, then:

x 2 y 2 x ^ 2-y ^ 2 can only leave 0.1 or 3 as a remainder in the division by 4. So it is impossible that there is solution to the equation of the problem.

0 pending reports

×

Problem Loading...

Note Loading...

Set Loading...