128 Zeroes

Find the smallest possible value of x x such that 1 × 2 × 3 × × x 1\times 2\times 3\times \dots \times x ends with 128 zeroes.


The answer is 520.

This section requires Javascript.
You are seeing this because something didn't load right. We suggest you, (a) try refreshing the page, (b) enabling javascript if it is disabled on your browser and, finally, (c) loading the non-javascript version of this page . We're sorry about the hassle.

1 solution

Lee Care Gene
Apr 19, 2016

Relevant wiki: Trailing Number of Zeros

From this problem, we want to find x x such that x 5 + x 5 2 + x 5 3 + x 5 4 + = 128 \left\lfloor \frac { x }{ 5 } \right\rfloor +\left\lfloor \frac { x }{ { 5 }^{ 2 } } \right\rfloor +\left\lfloor \frac { x }{ { 5 }^{ 3 } } \right\rfloor +\left\lfloor \frac { x }{ { 5 }^{ 4 } } \right\rfloor +\dots =128 .

A good estimate is essential here.

If x = 300 x=300 then 300 5 + 300 5 2 + 300 5 3 = 60 + 12 + 2 = 74 \left\lfloor \frac { 300 }{ 5 } \right\rfloor +\left\lfloor \frac { 300 }{ { 5 }^{ 2 } } \right\rfloor +\left\lfloor \frac { 300 }{ { 5 }^{ 3 } } \right\rfloor =60+12+2=74 .

If x = 400 x=400 then 400 5 + 400 5 2 + 400 5 3 = 80 + 16 + 3 = 99 \left\lfloor \frac { 400 }{ 5 } \right\rfloor +\left\lfloor \frac { 400 }{ { 5 }^{ 2 } } \right\rfloor +\left\lfloor \frac { 400 }{ { 5 }^{ 3 } } \right\rfloor =80+16+3=99 .

If x = 500 x=500 then 500 5 + 500 5 2 + 500 5 3 = 100 + 20 + 4 = 124 \left\lfloor \frac { 500 }{ 5 } \right\rfloor +\left\lfloor \frac { 500 }{ { 5 }^{ 2 } } \right\rfloor +\left\lfloor \frac { 500 }{ { 5 }^{ 3 } } \right\rfloor =100+20+4=124 .

We need 4 4 more factor 5 5 's, therefore x = 520 x=520 .

Removing the floor function and using the formula of infinite Gp, also gives a good estimate.
n 5 + n 25 + = 128 \dfrac{n}{5} + \dfrac{n}{25} + \ldots = 128
n 4 = 128 \dfrac{n}{4} = 128
n = 512 n = 512 which has 126 zeroes.
515 will have 127 zeroes, and 520 will have 128 zeroes.


A Former Brilliant Member - 5 years, 1 month ago

Same Way !

Chirayu Bhardwaj - 5 years, 1 month ago

0 pending reports

×

Problem Loading...

Note Loading...

Set Loading...