12th Power

Algebra Level 4

If sin 10 x + cos 10 x = 11 36 \sin^{10}x+\cos^{10}x=\dfrac{11}{36} , then

sin 12 x + cos 12 x = m n \large \sin^{12}x+\cos^{12}x = \frac mn

where m m and n n are positive coprime integers. Find the value of m + n m+n .


The answer is 67.

This section requires Javascript.
You are seeing this because something didn't load right. We suggest you, (a) try refreshing the page, (b) enabling javascript if it is disabled on your browser and, finally, (c) loading the non-javascript version of this page . We're sorry about the hassle.

2 solutions

Aaghaz Mahajan
Sep 27, 2019

Let sin 2 x = α \displaystyle \sin^{2}x=\alpha and cos 2 x = β \displaystyle \cos^{2}x=\beta .
Now, we have α + β = 1 \displaystyle \alpha+\beta=1 .
According to the question, α 5 + β 5 = 11 36 \displaystyle \alpha^{5}+\beta^{5}=\frac{11}{36} .
So, taking α = 1 2 + x \displaystyle \alpha=\frac{1}{2}+x and β = 1 2 x \displaystyle \beta=\frac{1}{2}-x and after some simplifications, we get


5 x 4 + 5 x 2 2 + 1 16 = 11 36 5x^{4}+\frac{5x^{2}}{2}+\frac{1}{16}=\frac{11}{36}

which can be easily solved to yeild x 2 = 1 12 \displaystyle x^{2}=\frac{1}{12} .
So,

( sin 2 x ) 6 + ( cos 2 x ) 6 = α 6 + β 6 = ( 1 2 + x ) 6 + ( 1 2 x ) 6 = 2 x 6 + 15 x 4 2 + 15 x 2 8 + 1 32 = 13 54 \left(\sin^{2}x\right)^{6}+\left(\cos^{2}x\right)^{6}=\alpha^{6}+\beta^{6}=\left(\frac{1}{2}+x\right)^{6}+\left(\frac{1}{2}-x\right)^{6}=2x^{6}+\frac{15x^{4}}{2}+\frac{15x^{2}}{8}+\frac{1}{32}=\frac{13}{54}

Hence, making the answer 67 \displaystyle \boxed{67}

Aaja hangouts pe......!!

Vilakshan Gupta - 1 year, 8 months ago
Chew-Seong Cheong
Sep 27, 2019

Let a = sin 2 x a=\sin^2 x and b = cos 2 x b=\cos^2 x . Then

a + b = 1 a 2 + b 2 = ( a + b ) 2 2 a b = 1 2 a b = 1 2 α Let α = a b a 3 + b 3 = ( a + b ) ( a 2 + b 2 ) a b ( a + b ) = 1 3 α a 4 + b 4 = 1 3 α α ( 1 2 α ) = 1 4 α + 2 α 2 a 5 + b 5 = 1 4 α + 2 α 2 α ( 1 3 α ) = 1 5 α + 5 α 2 \begin{aligned} a+b & = 1 \\ a^2+b^2 & = (a+b)^2 - 2ab = 1- 2{\color{#3D99F6}ab} = 1-2\color{#3D99F6} \alpha & \small \color{#3D99F6} \text{Let }\alpha = ab \\ a^3+b^3 & = (a+b)(a^2+b^2) - ab(a+b) = 1 - 3\alpha \\ a^4+b^4 & = 1 - 3\alpha - \alpha(1-2\alpha) = 1-4\alpha + 2\alpha^2 \\ a^5+b^5 & = 1-4\alpha + 2\alpha^2 - \alpha (1 - 3\alpha) = 1 - 5\alpha + 5\alpha^2 \end{aligned}

Therefore,

sin 10 x + cos 10 x = 1 5 α + 5 α 2 = 11 36 5 α 2 5 α + 25 36 = 0 α 2 α + 5 36 = 0 ( α 1 6 ) ( α 5 6 ) = 0 α = 1 6 Since α = sin 2 2 x 4 1 4 \begin{aligned} \sin^{10}x + \cos^{10}x & = 1 - 5\alpha + 5\alpha^2 = \frac {11}{36} \\ \implies 5\alpha^2 - 5\alpha + \frac {25}{36} & = 0 \\ \alpha^2 - \alpha + \frac 5{36} & = 0 \\ \left(\alpha - \frac 16\right) \left(\alpha - \frac 56\right) & = 0 \\ \implies \alpha & = \frac 16 & \small \color{#3D99F6} \text{Since }\alpha = \frac {\sin^2 2x}4 \le \frac 14 \end{aligned}

And

sin 12 x + cos 12 x = a 6 + b 6 = 11 36 α ( 1 4 α + 2 α 2 ) = 11 36 1 6 ( 1 4 × 1 6 + 2 × 1 36 ) = 13 54 \begin{aligned} \sin^{12}x + \cos^{12}x & = a^6+b^6 \\ & = \frac {11}{36} - \alpha (1-4\alpha + 2\alpha^2) \\ & = \frac {11}{36} - \frac 16 \left(1-4\times \frac 16 + 2\times \frac 1{36} \right) \\ & = \frac {13}{54} \end{aligned}

Hence m + n = 13 + 54 = 67 m+n = 13+54 = \boxed{67} .

0 pending reports

×

Problem Loading...

Note Loading...

Set Loading...