147 Follower Problem

a b c = 147 a < b < c \large a\cdot b\cdot c = 147\ \ \ \ \ a < b < c How many triples of integers ( a , b , c ) (a,b,c) satisfy this equation?

16 9 2 4 10

This section requires Javascript.
You are seeing this because something didn't load right. We suggest you, (a) try refreshing the page, (b) enabling javascript if it is disabled on your browser and, finally, (c) loading the non-javascript version of this page . We're sorry about the hassle.

1 solution

Arjen Vreugdenhil
Apr 26, 2016

The solutions are

( 147 , 1 , + 1 ) ( 49 , 3 , + 1 ) ( 49 , 1 , + 3 ) ( 21 , 7 , + 1 ) ( 21 , 1 , + 7 ) ( 7 , 3 , + 7 ) ( 7 , 1 , + 21 ) ( 3 , 1 , + 49 ) ( + 1 , + 3 , + 49 ) ( + 1 , + 7 , + 21 ) \begin{array}{ccccc} (-147, -1, +1) & (-49, -3, +1) & (-49, -1, +3) & (-21, -7, +1) & (-21, -1, +7) \\ (-7, -3, +7) & (-7, -1, +21) & (-3, -1, +49) & (+1, +3, +49) & (+1, +7, +21) \end{array}

(+7, +3, +7) (-7, -7, 3)?

Siva Bathula - 5 years, 1 month ago

Log in to reply

No-- the problem requires a < b < c a < b < c .

Arjen Vreugdenhil - 5 years, 1 month ago

Log in to reply

Right, I was solving it from my mobile, didn't pay proper attention

Siva Bathula - 5 years, 1 month ago

0 pending reports

×

Problem Loading...

Note Loading...

Set Loading...