#16 of June 2018 Grade 12 - Natural Sciences CSAT (Korean SAT) Mock test

Calculus Level 4

As shown on the right, there is a sector O A B \rm OAB with radius 1 1 and central angle π 2 . \dfrac{\pi}{2}.

Let H \rm H be the foot of perpendicular from P , \rm P, a point on arc A B , \rm AB, to O A . \overline{\rm OA}.

Pick a point Q \rm Q on arc B P \rm BP so that P O H = P H Q = θ . \angle \rm POH = \angle PHQ = \theta.

Then, the area of triangle O H Q \rm OHQ is S ( θ ) . S(\theta).

Find the value of lim θ 0 + S ( θ ) θ . \displaystyle \lim_{\theta\to 0^{+}}\dfrac{S(\theta)}{\theta}.


  • It is expected that you solve this in 5 minutes.

This problem is a part of <Grade 12 CSAT Mock test> series .

1 + 2 2 \dfrac{1+\sqrt{2}}{2} 5 + 2 2 \dfrac{5+\sqrt{2}}{2} 3 + 2 2 \dfrac{3+\sqrt{2}}{2} 4 + 2 2 \dfrac{4+\sqrt{2}}{2} 2 + 2 2 \dfrac{2+\sqrt{2}}{2}

This section requires Javascript.
You are seeing this because something didn't load right. We suggest you, (a) try refreshing the page, (b) enabling javascript if it is disabled on your browser and, finally, (c) loading the non-javascript version of this page . We're sorry about the hassle.

1 solution

Boi (보이)
Jun 9, 2018

Note that O H = cos θ \overline{\rm OH} = \cos \theta and O Q = 1 , \overline{\rm OQ} = 1, along with O H Q = π 2 θ . \angle \rm OHQ = \dfrac{\pi}{2}-\theta.

Use the cosine law to find H Q = x : \overline{\rm HQ}=x:

O Q 2 = O H 2 + H Q 2 2 O H H Q cos ( π 2 θ ) 1 = cos 2 θ + x 2 2 x cos θ sin θ x 2 2 x cos θ sin θ sin 2 θ = 0 x = cos θ sin θ + cos 2 θ sin 2 θ + sin 2 θ \overline{\rm OQ}^2 = \overline{\rm OH}^2 + \overline{\rm HQ}^2 - 2\overline{\rm OH}\cdot\overline{\rm HQ}\cdot \cos \left(\dfrac{\pi}{2}-\theta\right) \\ 1 = \cos^2\theta + x^2 - 2x \cos \theta \sin \theta \\ x^2 - 2x\cos\theta\sin\theta - \sin^2\theta = 0 \\ x = \cos\theta\sin\theta + \sqrt{\cos^2\theta\sin^2\theta + \sin^2\theta}

Then we proceed to find the limit.

lim θ 0 + S ( θ ) θ = lim θ 0 + 1 2 cos θ x sin ( π 2 θ ) θ = 1 2 lim θ 0 + sin ( π 2 θ ) cos θ lim θ 0 + cos θ sin θ + sin θ cos 2 θ + 1 θ = 1 2 ( 1 + 2 ) = 1 + 2 2 . \lim_{\theta\to 0^{+}}\dfrac{S(\theta)}{\theta} = \lim_{\theta\to 0^{+}} \dfrac{\dfrac{1}{2}\cos\theta \cdot x \cdot \sin\left(\dfrac{\pi}{2}-\theta\right)}{\theta} \\ =\frac{1}{2}\lim_{\theta\to 0^{+}}\sin\left(\dfrac{\pi}{2}-\theta\right)\cos \theta\cdot\lim_{\theta\to 0^{+}} \frac{\cos\theta\sin\theta+\sin\theta\sqrt{\cos^2\theta+1}}{\theta} \\ =\frac{1}{2}(1+\sqrt{2}) \\ =\boxed{\dfrac{1+\sqrt{2}}{2}}.

This is what happens when you solve all correctly and mark your answer wrong

Shivam Hinduja - 2 years, 11 months ago

0 pending reports

×

Problem Loading...

Note Loading...

Set Loading...