16.10

Algebra Level 4

n = 0 2016 n 3 n 2 + 1 = ? \large \sum_{n=0}^{2016} \left \lfloor \dfrac{ n^3}{n^2+1} \right \rfloor = \, ?


The answer is 2031120.

This section requires Javascript.
You are seeing this because something didn't load right. We suggest you, (a) try refreshing the page, (b) enabling javascript if it is disabled on your browser and, finally, (c) loading the non-javascript version of this page . We're sorry about the hassle.

3 solutions

Chew-Seong Cheong
Jul 20, 2016

S = n = 0 2016 n 3 n 2 + 1 The 0 t h term = 0 = n = 1 2016 n 3 n 2 + 1 = n = 1 2016 n ( n 2 + 1 ) n n 2 + 1 = n = 1 2016 n n n 2 + 1 Note that 0 < n n 2 + 1 < 1 = n = 1 2016 ( n 1 ) = 2016 ( 2017 ) 2 2016 = 2031120 \begin{aligned} S & = \sum_{n=\color{#D61F06}{0}}^{2016} \left \lfloor \frac {n^3}{n^2+1} \right \rfloor & \small \color{#D61F06}{\text{The }0^{th} \text{ term }=0} \\ & = \sum_{n=\color{#D61F06}{1}}^{2016} \left \lfloor \frac {n^3}{n^2+1} \right \rfloor \\ & = \sum_{n=1}^{2016} \left \lfloor \frac {n(n^2+1)-n}{n^2+1} \right \rfloor \\ & = \sum_{n=1}^{2016} \left \lfloor n - \color{#3D99F6}{\frac n{n^2+1}} \right \rfloor & \small \color{#3D99F6}{\text{Note that }0 < \frac n{n^2+1} < 1 } \\ & = \sum_{n=1}^{2016} (n-1) \\ & = \frac {2016(2017)}2 - 2016 \\ & = \boxed{2031120} \end{aligned}

Sabhrant Sachan
Jun 13, 2016

n = 0 2016 n 3 n 2 + 1 n = 0 2016 n 3 + n n n 2 + 1 n = 0 2016 n ( n 2 + 1 ) n n 2 + 1 n = 0 2016 n n n 2 + 1 = n = 0 2016 n n = 0 2016 n n 2 + 1 = 2016 2017 2 2016 ( n < n 2 + 1 n n 2 + 1 < 1 ) = 2031120 \displaystyle\sum_{n=0}^{2016}\left\lfloor \dfrac{n^3}{n^2+1}\right\rfloor \implies \displaystyle\sum_{n=0}^{2016}\left\lfloor \dfrac{n^3+n-n}{n^2+1}\right\rfloor \implies \displaystyle\sum_{n=0}^{2016}\left\lfloor \dfrac{n(n^2+1)-n}{n^2+1}\right\rfloor \implies \displaystyle\sum_{n=0}^{2016}\left\lfloor n- \dfrac{n}{n^2+1}\right\rfloor \\ = \displaystyle\sum_{n=0}^{2016}n-\displaystyle\sum_{n=0}^{2016}\left\lfloor -\dfrac{n}{n^2+1}\right\rfloor \\ = \dfrac{2016\cdot2017}{2}-2016 \quad \quad \left( n<n^2+1 \implies \dfrac{n}{n^2+1}<1 \right) \\ = \boxed{2031120}

M K
Jul 21, 2016

0 pending reports

×

Problem Loading...

Note Loading...

Set Loading...