#17 of June 2018 Grade 11 - Natural Sciences CSAT (Korean SAT) Mock test

Calculus Level 5

A sequence { a n } \{a_n\} with a 1 = 1 , a 2 = 1 , a 3 = 32 a_1=1,~a_2=-1,~a_3=32 satisfies

n ( n 2 ) a n + 1 = i = 1 n a i n(n-2)a_{n+1}=\sum_{i=1}^{n}a_i

for all positive integers n . n.

Let S ( n ) S(n) denote the number of positive integers k n k\le n such that 1 a k \dfrac{1}{a_k} is an integer.

Given S ( 1 0 20 ) = p × 1 0 q . S(10^{20})=p\times 10^{q}. where p , q p,~q are positive integers, with p p not a multiple of 10 , 10, find p + q . p+q.


This problem has been modified by me, and is a part of <Grade 11 CSAT Mock test> series .


The answer is 3140.

This section requires Javascript.
You are seeing this because something didn't load right. We suggest you, (a) try refreshing the page, (b) enabling javascript if it is disabled on your browser and, finally, (c) loading the non-javascript version of this page . We're sorry about the hassle.

1 solution

Boi (보이)
Jun 8, 2018

Since ( n 1 ) ( n 3 ) a n = i = 1 n 1 a i , \displaystyle (n-1)(n-3)a_{n}=\sum_{i=1}^{n-1}a_i, we have

n ( n 2 ) a n + 1 ( n 1 ) ( n 3 ) a n = a n n ( n 2 ) a n + 1 = { ( n 1 ) ( n 3 ) + 1 } a n = ( n 2 ) 2 a n n a n + 1 = ( n 2 ) a n ( n 2 ) n ( n 1 ) a n + 1 = ( n 1 ) ( n 2 ) a n ( n 2 ) ( n 1 ) ( n 2 ) a n = b n b n + 1 = b n = = b 3 = 64 a n = 64 ( n 1 ) ( n 2 ) . ( n 3 ) n(n-2)a_{n+1}-(n-1)(n-3)a_n=a_n \\ n(n-2)a_{n+1}=\{(n-1)(n-3)+1\}a_n=(n-2)^2a_n \\ na_{n+1}=(n-2)a_n~(n\neq 2) \\ n(n-1)a_{n+1}=(n-1)(n-2)a_n~(n\neq 2)~{\small \color{#3D99F6} (n-1)(n-2)a_n=b_n} \\ b_{n+1}=b_n=\,\cdots\,= b_3 = 64 \\ a_n=\frac{64}{(n-1)(n-2)}.~(n\ge 3)

Therefore, we have 1 a n = ( n 1 ) ( n 2 ) 64 . ( n 3 ) \dfrac{1}{a_n}=\dfrac{(n-1)(n-2)}{64}.~(n\ge 3)

If gcd ( k 1 , 64 ) 1 , \gcd(k-1,~64) \neq 1, then k k is an odd number, which means gcd ( k 2 , 64 ) = 1. \gcd(k-2,~64)=1.

Same applies for when gcd ( k 2 , 64 ) 1. \gcd(k-2,~64) \neq 1.

Hence, either k 1 k-1 is a multiple of 64 , 64, or k 2 k-2 is a multiple of 64. 64.

This means k = 1 + 64 m k=1+64m or k = 2 + 64 m . k=2+64m.

Note that k = 1 k=1 and k = 2 k=2 also satisfies the given condition, and with 1 0 20 64 × 2 = 3125 × 1 0 15 , \dfrac{10^{20}}{64}\times 2=3125\times 10^{15}, we can conclude that

S ( 1 0 20 ) = 3125 × 1 0 15 , S(10^{20})=3125\times 10^{15},

so that p + q = 3125 + 15 = 3140 . p+q=3125+15=\boxed{3140}.

0 pending reports

×

Problem Loading...

Note Loading...

Set Loading...