1700 Followers Problem

Algebra Level 3

{ x 3 6 x 2 + 5 x = 0 2 x 4 11 x 3 + 23 x 2 99 x + 45 = 0 \begin{cases} x^3-6x^2+5x=0 \\ 2x^4-11x^3+23x^2-99x+45=0 \end{cases}

If A A satisfy the root that satisfy the system of equations above? What is the value of 170 0 log A 17 1 7 log A 1700 1700^{\log_{A}17}-17^{\log_A1700} ?

Join the Brilliant Classes and enjoy the excellence.


The answer is 0.000.

This section requires Javascript.
You are seeing this because something didn't load right. We suggest you, (a) try refreshing the page, (b) enabling javascript if it is disabled on your browser and, finally, (c) loading the non-javascript version of this page . We're sorry about the hassle.

5 solutions

Let L H S = y = 170 0 log A 17 \space LHS = y = 1700^{\log_A{17}}

log A y = log A ( 170 0 log A 17 ) = log A 17 ( log A 1700 ) = log A ( 1 7 log A 1700 ) y = 1 7 log A 1700 = R H S \Rightarrow \log_A{y} = \log_A{\left( 1700^{\log_A{17}} \right)} = \log_A{17} (\log_A{1700} ) = \log_A{\left(17^{\log_A{1700}}\right)} \\ \Rightarrow y = 17^{\log_A{1700}} = RHS

170 0 log A 17 1 7 log A 1700 = 0 \Rightarrow 1700^{\log_A{17}} - 17^{\log_A{1700}} = \boxed{0}

can you write in more detail, how did you equate : Loga(1700^Loga17) = Loga 17(Loga 1700)

Kap Son - 5 years, 11 months ago

Log in to reply

Let u = log A 17 log A 170 0 log A 17 = log A 170 0 u = u log A 1700 = log A 17 log A 1700 u = \log_A{17}\Longrightarrow \log_A{1700^{ \log_A{17}}} = \log_A{1700^{u}} \\ = u\log_A{1700} = \log_A{17} \log_A{1700}

Chew-Seong Cheong - 5 years, 11 months ago

Log in to reply

thanks, i misread it... i read loga[17(loga1700)].

Kap Son - 5 years, 11 months ago

Simply solve first the roots of the first equation. It can be done simply since it is reducible in quadratic form. Then it can be found that one of the roots is 5 , so substituting it to the second equation, 5 also satisfies it hence the answer must be 0

Actually, we don't need to find the roots at all because x log y z = z log y x a l w a y s : ) { x }^{ \log _{ y }{ z } }={ z }^{ \log _{ y }{ x } }\quad always\quad :\quad )

Mayank Chaturvedi - 6 years, 1 month ago

Will you please explain how ? Thanks.

Niranjan Khanderia - 6 years, 1 month ago

Log in to reply

Ya definitely I will L e t a log b c a n d c log b a b e t h e t w o t o b e p r o v e d e q u a l . I f b m = c , a log b c = a m ( e q n 1 ) I f b n = a , c log b a = c n ( e q n 2 ) N o w , b = c 1 m = a 1 n . T h e r e f o r e c n = a m . T h i s p r o v e s ( e q n 1 ) = ( e q n 2 ) S o , a log b c = c log b a . Let\quad { a }^{ \log _{ b }{ c } }\quad and\quad { c }^{ \log _{ b }{ a } }\quad be\quad the\quad two\quad to\quad be\quad proved\quad equal.\\ If\quad { b }^{ m }\quad =\quad c\quad ,\quad { a }^{ \log _{ b }{ c } }={ \quad a }^{ m }\quad (eqn\quad 1)\\ If\quad { b }^{ n }\quad =\quad a\quad ,\quad { c }^{ \log _{ b }{ a } }\quad =c^{ n }\quad (eqn\quad 2)\\ Now,\quad b\quad ={ \quad c }^{ \frac { 1 }{ m } }={ \quad a }^{ \frac { 1 }{ n } }.Therefore\\ { c }^{ n }={ a }^{ m }.\quad This\quad proves\quad (eqn\quad 1)\quad =\quad (eqn\quad 2)\\ So,\quad { a }^{ \log _{ b }{ c } }\quad =\quad { c }^{ \log _{ b }{ a } }\quad .\quad \sharp \sharp \sharp Enjoy!

Mayank Chaturvedi - 6 years, 1 month ago

Log in to reply

Thank you for the explanation. I think this is not a very known identity.

Niranjan Khanderia - 6 years, 1 month ago
Akiva Weinberger
May 9, 2015

No matter the base, we always have: a log b = b log a a^{\log b}=b^{\log a} Proof: Writing e e for the base (though it really could be anything), it's easy to see that they are both equal to e ( log a ) ( log b ) e^{(\log a)(\log b)} . \quad\square

This immediately gives us 170 0 log A 17 = 1 7 log A 1700 1700^{\log_A17}=17^{\log_A1700} , which means that 170 0 log A 17 1 7 log A 1700 = 0 \boxed{1700^{\log_A17}-17^{\log_A1700}=0} .

170 0 log A 17 1 7 log A 1700 T a k i n g log A : o f e a c h t e r m . log A 17 log A 1700.. L e f t t e r m . . . . . . . log A 1700 log A 17.. R i g h t t e r m . Log to the same base are equal, so the terms are also equal. So, expression=0. No need of the given two equations. \large \color{#D61F06}{ 1700^{\log_A{17} } } -\color{#3D99F6}{17^{\log_A{1700}} } \\Taking ~\log_A:-~~of ~each~ term.\\ \color{#D61F06}{\log_A{17} *\log_A{1700}..Left~ term.} ......\color{#3D99F6}{\log_A{1700}*\log_A{17}..Right~term.}\\\text{Log to the same base are equal, so the terms are also equal.}\\\text{So, expression=0.}\\\text{No need of the given two equations. }

Quintessence Anx
May 8, 2015

As mentioned by another solution, it can be shown that x log y z = z log y x x^{\log_y z} = z^{\log_y x} , so you don't even need any other information to know the result is 0 0 .

That said, if you did want to find the roots as an exercise, then I'd recommend starting with x 3 6 x 2 + 5 x = x ( x 5 ) ( x 1 ) = 0 x^3 - 6x^2 + 5x = x(x-5)(x-1) = 0 . Since the constant term of the second equation is 45 45 , it's worth verifying that x 5 x-5 is a root. Once you discover that it is, you can factor out the rest: 2 x 4 11 x 3 + 23 x 2 99 x + 45 = ( x 5 ) ( 2 x 1 ) ( x 2 + 9 ) = 0 2x^4 - 11x^3 + 23x^2 - 99x + 45 = (x-5)(2x-1)(x^2+9) = 0 .

0 pending reports

×

Problem Loading...

Note Loading...

Set Loading...