1729 warriors united...where is the army !!!

Geometry Level 4

Find the value of the sum c o s A + c o s ( A + 2 π 1729 ) + c o s ( A + 4 π 1729 ) + . . . . t o 1729 t e r m s cosA+cos\left( A+\frac{2\pi}{1729} \right) +cos\left( A+\frac{4\pi}{1729} \right) +.... to \ 1729 \ terms


Try more Trigonometry Problems .


The answer is 0.

This section requires Javascript.
You are seeing this because something didn't load right. We suggest you, (a) try refreshing the page, (b) enabling javascript if it is disabled on your browser and, finally, (c) loading the non-javascript version of this page . We're sorry about the hassle.

1 solution

Pranjal Jain
Dec 12, 2014

cos x + cos ( x + y ) + cos ( x + 2 y ) + . . . + cos ( x + ( n 1 ) y ) = sin n y 2 sin y 2 × cos ( x + ( n 1 ) y 2 ) \cos x+\cos (x+y)+\cos (x+2y)+...+\cos (x+(n-1)y)=\frac{\sin\frac{ny}{2}}{\sin\frac{y}{2}}×\cos(x+\frac{(n-1)y}{2})

Substitute x = A , y = 2 π 1729 , n = 1729 x=A,\ y=\frac{2\pi}{1729},\ n=1729 ,

S = sin 1729 × 2 π 1729 2 sin 2 π 1729 2 × cos ( A + 1728 × 2 π 1729 2 ) S=\dfrac{\sin\dfrac{1729×\frac{2\pi}{1729}}{2}}{\sin\dfrac{\frac{2\pi}{1729}}{2}}×\cos(A+\frac{1728×\frac{2\pi}{1729}}{2}) S = 0 S=0 as sin π = 0 \sin\pi=0

0 pending reports

×

Problem Loading...

Note Loading...

Set Loading...