#18 Hua Luo Geng.

n = ( 1 9 3 3 × 18 × 19 1 ) 2 n=(19^3 -3\times 18\times 19 -1)^2

Find the number of factors of n n .

91 72 216 78

This section requires Javascript.
You are seeing this because something didn't load right. We suggest you, (a) try refreshing the page, (b) enabling javascript if it is disabled on your browser and, finally, (c) loading the non-javascript version of this page . We're sorry about the hassle.

2 solutions

Chew-Seong Cheong
Aug 22, 2017

n = ( 1 9 3 3 × 18 × 19 1 ) 2 = ( 1 9 3 3 ( 19 1 ) ( 19 ) 1 ) 2 = ( 1 9 3 3 ( 1 9 2 ) + 3 ( 19 ) 1 ) 2 Note that ( a 1 ) 3 = a 3 3 a 2 + 3 a 1 = ( 19 1 ) 3 × 2 = 1 8 6 = ( 2 × 3 2 ) 6 = 2 6 × 3 12 \begin{aligned} n & = \left(19^3-{\color{#3D99F6}3\times 18 \times 19} - 1\right)^2 \\ & = \left(19^3-{\color{#3D99F6}3(19-1)(19)} - 1\right)^2 \\ & = \left(19^3-{\color{#3D99F6}3(19^2) + 3(19)} - 1\right)^2 & \small \color{#3D99F6} \text{Note that }(a-1)^3 = a^3-3a^2+3a-1 \\ & = \left(19 - 1\right)^{3 \times 2} \\ & = 18^6 = \left(2\times 3^2\right)^6 = 2^{\color{#D61F06}6} \times 3^{\color{#D61F06}12} \end{aligned}

Therefore the number of factors of n n , σ 0 ( n ) = ( 6 + 1 ) ( 12 + 1 ) = 91 \sigma_0 (n) = ({\color{#D61F06}6} + 1)({\color{#D61F06}12}+1) = \boxed{91}

Áron Bán-Szabó
Aug 21, 2017

Note that if k k is a positive integer, then ( k 1 ) 3 = k 3 3 k 2 + 3 k 1 = k 3 3 k ( k 1 ) 1 = k 3 3 × k × ( k 1 ) 1 (k-1)^3=k^3-3k^2+3k-1=k^3-3k(k-1)-1=k^3-3\times k\times (k-1)-1

From that 1 9 3 3 × 18 × 19 1 = ( 19 1 ) 3 = 1 8 3 19^3-3\times 18\times 19-1=(19-1)^3=18^3

18 = 2 1 × 3 2 18=2^1\times 3^2 . Ergo ( 1 8 3 ) 2 = ( 2 1 × 3 × 3 2 × 3 ) 2 = ( 2 3 × 3 6 ) 2 = 2 3 × 2 × 3 6 × 2 = 2 6 × 3 12 (18^3)^2=(2^{1\times 3}\times 3^{2\times 3})^2=(2^3\times 3^6)^2=2^{3\times 2}\times 3^{6\times 2}=2^6\times 3^{12} .

Therefore n n has ( 6 + 1 ) × ( 12 + 1 ) = 7 × 13 = 91 (6+1)\times (12+1)=7\times 13=\boxed{91} divisors.

Yes , absolutely. Thank you for writing a solution ^^.

Kelvin Hong - 3 years, 9 months ago

0 pending reports

×

Problem Loading...

Note Loading...

Set Loading...