180 Followers Problem!

Algebra Level 4

If x x , y y and z z are positive reals, such that x y z = 2 xyz = 2 then find the minimum of x 4 + 4 y 2 + 4 z 4 x^4 + 4y^2 + 4z^4


This problem is original


The answer is 16.

This section requires Javascript.
You are seeing this because something didn't load right. We suggest you, (a) try refreshing the page, (b) enabling javascript if it is disabled on your browser and, finally, (c) loading the non-javascript version of this page . We're sorry about the hassle.

4 solutions

Deepak Kumar
Nov 5, 2015

Simple application of AM-GM.Just split 4y^2 as 2y^2+2y^2 and we get 16 as the minimum required value.

What are the values of x,y and z?

riccardo lombardi - 5 years, 7 months ago
Atul Shivam
Nov 12, 2015

simple question

apply A M G M AM-GM inequality x 4 + 2 y 2 + 2 y 2 + 4 z 4 4 x 4 × 2 y 2 × 2 y 2 × 4 z 4 4 \frac {x^4+2y^2+2y^2+4z^4}{4} \geq \sqrt[4]{x^4×2y^2×2y^2×4z^4}

x 4 + 2 y 2 + 2 y 2 + 4 z 4 4 x 4 × 2 y 2 × 2 y 2 × 4 z 4 4 x^4+2y^2+2y^2+4z^4 \geq 4\sqrt[4]{x^4×2y^2×2y^2×4z^4}

x 4 + 2 y 2 + 2 y 2 + 4 z 4 4 × 2 x y z x^4+2y^2+2y^2+4z^4\geq 4×2xyz x 4 + 2 y 2 + 2 y 2 + 4 z 4 16 x^4+2y^2+2y^2+4z^4\geq 16 so the correct answer is 16 \boxed{16}

Did the exact same

Aditya Kumar - 5 years ago

x 4 + 4 y 2 + 4 z 4 = x 4 + 2 y 2 + 2 y 2 + 4 z 4 By AM-GM inequality, x 4 + 2 y 2 + 2 y 2 + 4 z 4 4 x 4 2 y 2 2 y 2 4 z 4 4 = 16 \begin{aligned} x^4+4y^2+4z^4&=x^4+2y^2+2y^2+4z^4 \\ \text{By AM-GM inequality,} x^4+2y^2+2y^2+4z^4 &\geq 4 \cdot \sqrt[4]{x^4\cdot 2y^2\cdot 2y^2\cdot 4z^4}=\boxed{16}\\ \end{aligned}

Tamir Dror
Nov 15, 2015

It's obvious x=y=squared 2 z=1 So 16

0 pending reports

×

Problem Loading...

Note Loading...

Set Loading...